МИР ЛОГИКИ

Законы алгебры логики и правила преобразования логических выражений

Равносильные преобразования логических формул имеют то же назначение, что и преобразования формул в обычной алгебре. Они служат для упрощения формул или приведения их к определённому виду путем использования основных законов алгебры логики.

Под упрощением формулы, не содержащей операций импликации и эквиваленции, понимают равносильное преобразование, приводящее к формуле, которая либо содержит по сравнению с исходной меньшее число операций конъюнкции и дизъюнкции и не содержит отрицаний неэлементарных формул, либо содержит меньшее число вхождений переменных.

Некоторые преобразования логических формул похожи на преобразования формул в обычной алгебре (вынесение общего множителя за скобки, использование переместительного и сочетательного законов и т.п.), тогда как другие преобразования основаны на свойствах, которыми не обладают операции обычной алгебры (использование распределительного закона для конъюнкции, законов поглощения, склеивания, де Моргана и др.).

Закон

Формулировка

1. Закон тождества

Всякое высказывание тождественно самому себе.

2. Закон исключенного третьего

Высказывание может быть либо истинным, либо ложным, третьего не дано. Следовательно, результат логического сложения высказывания и его отрицания всегда принимает значение «истина».

3. Закон непротиворечия

Высказывание не может быть одновременно истинным и ложным. Если высказывание Х истинно, то его отрицание НЕ Х должно быть ложным. Следовательно, логическое произведение высказывания и его отрицания должно быть ложно.

4. Закон двойного отрицания

Если дважды отрицать некоторое высказывание, то в результате получим исходное высказывание.

5. Переместительный (коммутативный) закон

Результат операции над высказываниями не зависит от того, в каком порядке берутся эти высказывания.

6. Сочетательный (ассоциативный) закон

При одинаковых знаках скобки можно ставить произвольно или вообще опускать.

5. Распределительный (дистрибутивный) закон

(X /\ Y) \/ Z= (X /\ Z) \/ (Y /\ Z)

(X /\ Y) \/ Z = (X \/ Z) /\ (Y \/ Z)

Определяет правило выноса общего высказывания за скобку.

7. Закон общей инверсии Закон де Моргана

Закон общей инверсии.

8. Закон равносильности (идемпотентности)

от латинских слов idem — тот же самый и potens —сильный

mir-logiki.ru

Законы логики на уроках информатики и ИКТ

Урок по информатике рассчитан на учащихся 10-х классов общеобразовательной школы, в учебном плане которой входит раздел «Алгебра логики». Учащимся очень нелегко дается эта тема, поэтому мне, как учителю, захотелось заинтересовать их в изучении законов логики, упрощении логических выражений и с интересом подойти к решению логических задач. В обычной форме давать уроки по этой теме нудно и хлопотно, да и ребятам не всегда понятны некоторые определения. В связи с предоставлением информационного пространства, у меня появилась возможность выкладывать свои уроки в оболочке «learning». Учащиеся, зарегистрировавшись в ней, могут в свое свободное время посещать этот курс и перечитывать то, что было непонятно на уроке. Некоторые учащиеся, пропустив уроки по болезни, наверстывают дома или в школе пропущенную тему и всегда готовы к следующему уроку. Такая форма преподавания очень устроила многих ребят и те законы, которые им были непонятны, теперь в компьютерном виде ими усваиваются гораздо легче и быстрее. Предлагаю один из таких уроков информатики, который проводится интегративно с ИКТ.

  1. Объяснение нового материала, с привлечением компьютера – 25 минут.
  2. Основные понятия и определения, выложенные в «learning» — 10 минут.
  3. Материал для любознательных – 5 минут.
  4. Домашнее задание – 5 минут.

1. Объяснение нового материала

Законы формальной логики

Наиболее простые и необходимые истинные связи между мыслями выражаются в основных законах формальной логики. Таковыми являются законы тождества, непротиворечия, исключенного третьего, достаточного основания.

Эти законы являются основными потому, что в логике они играют особо важную роль, являются наиболее общими. Они позволяют упрощать логические выражения и строить умозаключения и доказательства. Первые три из вышеперечисленных законов были выявлены и сформулированы Аристотелем, а закон достаточного основания — Г. Лейбницем.

Закон тождества: в процессе определенного рассуждения всякое понятие и суждение должны быть тождественны самим себе.

Закон непротиворечия: невозможно, чтобы одно и то оке в одно то же время было и не было присуще одному и тому же в одном и том же отношении. То есть невозможно что-либо одновременно утверждать и отрицать.

Закон исключенного третьего: из двух противоречащих суждений одно истинно, другое ложно, а третьего не дано.

Закон достаточного основания: всякая истинная мысль должна быть достаточно обоснована.

Последний закон говорит о том, что доказательство чего-либо предполагает обоснование именно и только истинных мыслей. Ложные же мысли доказать нельзя. Есть хорошая латинская пословица: «Ошибаться свойственно всякому человеку, но настаивать на ошибке свойственно только глупцу». Формулы этого закона нет, так как он имеет только содержательный характер. В качестве аргументов для подтверждения истинной мысли могут быть использованы истинные суждения, фактический материал, статистические данные, законы науки, аксиомы, доказанные теоремы.

Законы алгебры высказываний

Алгебра высказываний (алгебра логики) — раздел математической логики, изучающий логические операции над высказываниями и правила преобразования сложных высказываний.

При решении многих логических задач часто приходится упрощать формулы, полученные при формализации их условий. Упрощение формул в алгебре высказываний производится на основе эквивалентных преобразований, опирающихся на основные логические законы.

Законы алгебры высказываний (алгебры логики) — это тавтологии.

Иногда эти законы называются теоремами.

В алгебре высказываний логические законы выражаются в виде равенства эквивалентных формул. Среди законов особо выделяются такие, которые содержат одну переменную.

Первые четыре из приведенных ниже законов являются основными законами алгебры высказываний.

Всякое понятие и суждение тождественно самому себе.

Закон тождества означает, что в процессе рассуждения нельзя подменять одну мысль другой, одно понятие другим. При нарушении этого закона возможны логические ошибки.

Например, рассуждение Правильно говорят, что язык до Киева доведет, а я купил вчера копченый язык, значит, теперь смело могу идти в Киев неверно, так как первое и второе слова «язык» обозначают разные понятия.

В рассуждении: Движение вечно. Хождение в школу — движение. Следовательно, хождение в школу вечно слово «движение» используется в двух разных смыслах (первое — в философском смысле — как атрибут материи, второе — в обыденном смысле — как действие по перемещению в пространстве), что приводит к ложному выводу.

Не могут быть одновременно истинными суждение и его отрицание. То есть если высказывание А — истинно, то его отрицание не А должно быть ложным (и наоборот). Тогда их произведение будет всегда ложным.

Именно это равенство часто используется при упрощении сложных логических выражений.

Иногда этот закон формулируется так: два противоречащих друг другу высказывания не могут быть одновременно истинными. Примеры невыполнения закона непротиворечия:

1. На Марсе есть жизнь и на Марсе жизни нет.

2. Оля окончила среднюю школу и учится в X классе.

Закон исключенного третьего:

В один и тот же момент времени высказывание может быть либо истинным, либо ложным, третьего не дано. Истинно либо А, либо не А. Примеры выполнения закона исключенного третьего:

1. Число 12345 либо четное, либо нечетное, третьего не дано.

2. Предприятие работает убыточно или безубыточно.

3. Эта жидкость является или не является кислотой.

Закон исключенного третьего не является законом, признаваемым всеми логиками в качестве универсального закона логики. Этот закон применяется там, где познание имеет дело с жесткой ситуацией: «либо — либо», «истина—ложь». Там же, где встречается неопределенность (например, в рассуждениях о будущем), закон исключенного третьего часто не может быть применен.

Рассмотрим следующее высказывание: Это предложение ложно. Оно не может быть истинным, потому что в нем утверждается, что оно ложно. Но оно не может быть и ложным, потому что тогда оно было бы истинным. Это высказывание не истинно и не ложно, а потому нарушается закон исключенного третьего.

Парадокс (греч. paradoxos — неожиданный, странный) в этом примере возникает из-за того, что предложение ссылается само на себя. Другим известным парадоксом является задача о парикмахере: В одном городе парикмахер стрижет волосы всем жителям, кроме тех, кто стрижет себя сам. Кто стрижет волосы парикмахеру? В логике из-за ее формальности нет возможности получить форму такого ссылающегося самого на себя высказывания. Это еще раз подтверждает мысль о том, что с помощью алгебры логики нельзя выразить все возможные мысли и доводы. Покажем, как на основании определения эквивалентности высказываний могут быть получены остальные законы алгебры высказываний.

Например, определим, чему эквивалентно (равносильно) А (двойное отрицание А, т. е. отрицание отрицания А). Для этого построим таблицу истинности:

По определению равносильности мы должны найти тот столбец, значения которого совпадают со значениями столбца А. Таким будет столбец А.

Таким образом, мы можем сформулировать закон двойного отрицания:

Если отрицать дважды некоторое высказывание, то в результате получается исходное высказывание. Например, высказывание А = Матроскинкот эквивалентно высказыванию А = Неверно, что Матроскин не кот.

Аналогичным образом можно вывести и проверить следующие законы:

Сколько бы раз мы ни повторяли: телевизор включен или телевизор включен или телевизор включен . значение высказывания не изменится. Аналогично от повторения на улице тепло, на улице тепло. ни на один градус теплее не станет.

Операнды А и В в операциях дизъюнкции и конъюнкции можно менять местами.

A v(B v C) = (A v B) v C;

А & (В & C) = (A & В) & С.

Если в выражении используется только операция дизъюнкции или только операция конъюнкции, то можно пренебрегать скобками или произвольно их расставлять.

A v (B & C) = (A v B) &(A v C)

(дистрибутивность дизъюнкции
относительно конъюнкции)

А & (B v C) = (A & B) v (А & C)

(дистрибутивность конъюнкции
относительно дизъюнкции)

Закон дистрибутивности конъюнкции относительно дизъюнкции ана­логичен дистрибутивному закону в алгебре, а закон дистрибутивности дизъюнкции относительно конъюнкции аналога не имеет, он справедлив только в логике. Поэтому необходимо его доказать. Доказательство удобнее всего провести с помощью таблицы истинности:

Проведите доказательство законов поглощения самостоятельно.

Словесные формулировки законов де Моргана:

Мнемоническое правило: в левой части тождества операция отрицания стоит над всем высказыванием. В правой части она как бы разрывается и отрицание стоит над каждым из простых высказываний, но одновременно меняется операция: дизъюнкция на конъюнкцию и наоборот.

Примеры выполнения закона де Моргана:

1) Высказывание Неверно, что я знаю арабский или китайский язык тождественно высказыванию Я не знаю арабского языка и не знаю китайского языка.

2) Высказывание Неверно, что я выучил урок и получил по нему двойку тождественно высказыванию Или я не выучил урок, или я не получил по нему двойку.

Замена операций импликации и эквивалентности

Операций импликации и эквивалентности иногда нет среди логических операций конкретного компьютера или транслятора с языка программирования. Однако для решения многих задач эти операции необходимы. Существуют правила замены данных операций на последовательности операций отрицания, дизъюнкции и конъюнкции.

Так, заменить операцию импликации можно в соответствии со следующим правилом:

Для замены операции эквивалентности существует два правила:

В справедливости данных формул легко убедиться, построив таблицы истинности для правой и левой частей обоих тождеств.

Знание правил замены операций импликации и эквивалентности помогает, например, правильно построить отрицание импликации.

Рассмотрим следующий пример.

Пусть дано высказывание:

Е = Неверно, что если я выиграю конкурс, то получу приз.

Пусть А = Я выиграю конкурс,

В = Я получу приз.

Отсюда, Е = Я выиграю конкурс, но приз не получу.

Интерес представляют и следующие правила:

Доказать их справедливость можно также с помощью таблиц истинности.

Интересно их выражение на естественном языке.

Если Винни-Пух съел мед, то он сыт

Если Винни-Пух не сыт, то меда он не ел.

Задание: придумайте фразы-примеры на данные правила.

2. Основные понятия и определения в Приложении 1

3. Материал для любознательных в Приложении 2

4. Домашнее задание

1) Выучить законы логики, используя курс «Алгебры логики», размещенный в информационном пространстве (www.learning.9151394.ru).

2) Проверить на ПК доказательство законов де Моргана, построив таблицу истинности.

  1. Основные понятия и определения (Приложение 1).
  2. Материал для любознательных (Приложение 2).

xn--i1abbnckbmcl9fb.xn--p1ai

Урок 5. Логические законы и противоречия

В прошлом уроке были рассмотрены условия истинности для категорических атрибутивных высказываний в силлогистике. Мы показали, что разные типы высказываний при одних условиях истинны, а при других – ложны. При этом нам ни разу не встречались высказывания, которые были бы всегда истинны или всегда ложны. Между тем, такие высказывания бывают. Первые называются логическими законами, а вторые – логическими противоречиями. О них мы и поговорим в этом уроке.

Во введении к курсу было сказано, что логика – это нормативная наука о формах и приёмах рациональной познавательной деятельности. Как и любая другая наука, логика также формулирует свои законы. Однако в отличие от других наук, законы эти являются нормативными, то есть они не описывают процесс человеческого мышления, а предписывают, как человек должен мыслить, если он хочет, чтобы его рассуждение было корректным. Таким образом, логические законы представляют собой некие общие принципы, которыми люди должны руководствоваться в процессе рассуждения.

Если попытаться дать более строгое определение, то:

Логический закон – это определённая логическая форма, благодаря которой высказывание в целом принимает значение «истина», независимо от конкретного содержания его частей.

По этой причине логические законы также иногда называют логическими тавтологиями: о чём бы мы не говорили, высказывания, имеющие форму логических законов, всегда оказываются истинными. К тому же они кажутся «бесплодными», потому что мы не можем извлечь из них никакой реальной информации о мире.

Логические противоречия – полная противоположность логическим законам, то есть это такая логическая форма, при которой высказывание в целом всегда принимает значение «ложь», независимо от содержания его частей.

Содержание:

Таблицы истинности

Как же определить, что определённое высказывание всегда принимает значение «истина» или «ложь»? Логики придумали для этого очень удобный метод, который получил название «таблиц истинности». Как понятно из названия, они представляют собой таблицы, в которых в верхнюю строку записывается логическая форма высказываний, а в столбцы под каждым компонентом записываются их истинностные значения. Давайте построим таблицу истинности для высказывания «Идёт дождь».

Здесь всё довольно ясно: «Идёт дождь» – это простое высказывание, которое может принимать значение либо «истина», либо «ложь». Обычно для удобства логики сокращают значения до «и» и «л», а само высказывание записывают маленькой буквой латинского алфавита: p, q, r, s и т.д. Поэтому в классическом виде таблица истинности для одного простого высказывания будет выглядеть так:

Давайте теперь представим, что у нас есть два высказывания: «Идёт дождь» и «Светит солнце». Пока они никаким образом не связаны между собой. Однако поскольку их уже два, то у нас возможны уже не две, а четыре комбинации: оба высказывания истинны, оба высказывания ложны, истинно либо первое, либо второе высказывание. Таблица истинности для них будет включать уже четыре строки для значений.

Если у нас есть три высказывания («Идёт дождь», «Светит солнце», «Трава зеленеет»), то таблица будет включать уже восемь строк для значений, так как в таком случае возможны восемь комбинаций.

Чем больше разных высказываний вы хотите рассмотреть, тем больше комбинаций из значений возможно. Число этих комбинаций для n высказываний вычисляется по формуле 2 n . Так для четырёх высказываний, число комбинаций – шестнадцать, для пяти – тридцать два и т.д.

Таблицы истинности строятся и в силлогистике, однако выглядят они немного иначе. В левый столбец обычно помещается диаграмма, изображающая то или иное отношение между терминами S и P, а справа помещаются различные типы высказываний и их истинностные значения.

Это сводная таблица истинности для всех типов атрибутивных высказываний, которые мы обсуждали в прошлом уроке (единичные высказывания не включены отдельно, так как их условия истинности приравниваются к условиям истинности для общих высказываний).

Далее, понятно, что обычно в рассуждении высказывания каким-то образом связаны между собой с помощью пропозициональных связок. Мы зададим истинностные значения для основных связок, которые используются чаще всего в естественном языке.

Логическое отрицание используется, когда в высказывании отрицается наличие некоторой ситуации в мире, говорится об её отсутствии. Например, «Дождь не идёт», «Комната была небольшой», «Неправда, что они друзья». В логике обычно передается через выражения «неверно, что p» или просто «не-p».

Как видно из таблицы, если высказывание истинно, то его отрицание будет принимать значение «ложь», если же высказывание само по себе ложно, то – «истина». Предположим, что вместо p мы имеем высказывание «Маргарет Тэтчер была первой и на настоящий момент единственной женщиной-премьер-министром Великобритании». Это истинное высказывание. Соответственно, если взять его отрицание: «Маргарет Тэтчер не была первой и на настоящий момент единственной женщиной-премьер-министром Великобритании», то оно будет ложным. Если же взять высказывание «Все болезни от нервов», которое является ложным, то его отрицание «Неверно, что все болезни от нервов» будет истинным.

Конъюнкция представляет собой одновременное утверждение наличия двух ситуаций. В естественном языке она обычно передаётся союзами «и», «а», «но» и конструкциями типа «в то же время», «одновременно», «вместе» и т.д. Примеры конъюнкции можно увидеть в высказываниях «Пошёл дождь, и я спрятался под навес», «Витя хотел пойти в кино, а я хотел поиграть в футбол», «Белкин ждал директора целый час, но так и не дождался». Как видно, конъюнкция соединяет два или более простых высказываний в одно сложное.

Конъюнктивное высказывание может быть истинным, только если все его части истинны. Если хотя бы одно простое высказывание, входящее в её состав ложно, то тогда и конъюнкция в целом ложна. Пример истинной конъюнкции: «44-го президента США зовут Барак, а его жену – Мишель». Все следующие высказывания будут ложными: «44-го президента США зовут Барак, а его жену – Мэгги», «44-го президента США зовут Борат, а его жену – Мишель», «44-го президента США зовут Джон, а его жену – Элен».

Дизъюнкция утверждает, что хотя бы одна из двух или более ситуаций имеет место. В естественном языке она выражается словами «или» и «либо». Примеры дизъюнктивных высказываний: «Маша была замужем за Анатолием или за Николаем», «Он работает над проектом ИК-25 либо ПФ-40». Хотя это не так очевидно, как в случае с конъюнкцией, дизъюнкция также объединяет в одно сложное высказывание два или более простых высказывания. Если мы выявляем логическую форму, то правильной была бы запись: «Маша была замужем за Анатолием, или Маша была замужем за Николаем».

Из таблицы понятно, что дизъюнкция ложна, только когда все простые высказывания, входящие в её состав ложны. К примеру, ложным будет высказывание «Уганда находится в Центральной Америке или Западной Европе». Когда хотя бы одна из частей дизъюнкции истина, она в целом также будет истинной. Например, истинным является высказывание «Нот всего семь или шесть». При этом важно отметить, что выражение «хотя бы одна» подразумевает, что и обе части могут быть истинными. Иллюстрацией может служить следующее высказывание: «Велосипеды бывают двухколёсными или трёхколесными». Велосипеды бывают и такими, и другими, поэтому высказывание истинно. Однако нередки случаи, когда мы хотим указать, что лишь одна из альтернатив истинна, но никак не обе вместе. Рассмотрим высказывание «Картина “Герника” принадлежит кисти Пикассо или Тициана». Здесь либо одно, либо другое. Они даже не могли написать её вместе, так как жили в разных веках. В таких ситуациях говорят о строгой дизъюнкции, которая будет истинна исключительно при истинности одного из её членов. Обычно она выражается словами «либо, либо».

Материальная импликация – это связка, которая передаёт отношения причинно-следственной связи между высказываниями. Она выражается словами «если, то». «Если Люся – полная отличница, то и по математике у неё должна быть пятёрка». Смысл импликации состоит в том, что если первое простое высказывание верно, то и второе тоже будет верным.

Попробуем разобраться с этой таблицей. Проблема в том, что истинностные значения материальной импликации, в отличие от значений других пропозициональных связок, совсем не являются интуитивными. С первой строкой всё ясно: если первое высказывание верно, и второе высказывание верно, то импликация в целом тоже верна. Пример: «Если птицы улетают на юг, то, значит, наступила осень». Со второй строкой тоже всё более или менее понятно: если первое высказывание истинно, а второе ложно, то отношения следования между ними нет. Вспомните отрывок из «Золотого ключика», в котором Мальвина пытается научить Буратино арифметике:

– Предположим у вас в кармане два яблока, и некто забрал у вас одно из них. Сколько у вас останется яблок?
– Два.
– Но почему?
– Ведь я не отдам Некту яблоко, пусть он и дерись!

Рассуждения Буратино можно представить в виде высказывания «Если некто забрал одно из имеющихся у меня двух яблок, у меня всё равно осталось два яблока». Если первая часть истинна, то вторая, безусловно, ложна, а потому и импликация в целом ложна. Способностей к арифметике у Буратино, действительно, не было.

С последними двумя строчками дело обстоит сложнее. Проблема в том, что для них сложно придумать пример на естественном языке. Когда логики формулировали значение материальной импликации, они пользовались математическим примером. Они взяли высказывание «Для всякого числа верно, что если оно кратно 4, то оно кратно и двум». Если это высказывание верно для всякого числа, то оно должно быть верным и для любого конкретного числа: 5, 6, 8, 12 и т.д. Если подставить в высказывание 8, то получим: «если 8 кратно 4, то оно кратно и 2». Здесь и первая, и вторая части истинны. Мы получили первую строку. Если подставить число 6, «если 6 кратно 4, то оно кратно и 2», то мы получаем третью строку (первая часть ложна, а вторая истинна). Если подставить 5, «если 5 кратно 4, то 5 кратно и двум», то выходит последняя строка (обе части ложны). Однако мы всё же можем подобрать примеры для всех этих ситуации, поэтому импликация истинна. Но вот для второй строки пример подобрать нельзя: нет такого числа, которое было бы кратно 4, но некратно 2. Поэтому вторая строка ложна.

Итак, мы разобрали истинностные значения основных связок, теперь мы можем посмотреть, какие их комбинации приведут к тому, что высказывание подобной формы будет всегда истинным, независимо от его содержания, другими словами – будет логическим законом.

Логические законы

Сразу стоит оговориться, что логических законов довольно много. Кроме того, обычно они формулируются в рамках конкретной логической системы: логики высказываний, логики предикатов, силлогистики, модальной логики и т.д. То, что является законом в одной системе, совсем необязательно будет законом в другой системе. Однако существует несколько основных законов, которые будут верны в любой логической системе. О них мы и расскажем.

Закон тождества

Закон тождества обычно формулируется в виде формулы «А есть А» или «Если А, то А».

Проверим этот закон с помощью таблицы истинности. Во-первых, у нас всего одно выражение – А, поэтому таблица будет включать только две комбинации: А истинно и А ложно. Во-вторых, связка «Если …, то …» выступает как знак материальной импликации. Таким образом, мы должны взять первую и последнюю строку из таблицы для материальной импликации.

Истинностное значение импликации

Закон тождества также может быть сформулирован и в силлогистике для высказываний «Все А есть А» и «Некоторые А есть А»:

Какой бы термин мы не подставили на место А, высказывания, имеющие эти формы, всегда будут истинными: «Все кошки – это кошки», «Все туфли – это туфли», «Некоторые автомобили – это автомобили», «Некоторые дома – это дома» и т.п.

Как понятно из названия этого закона, он говорит о том, что А тождественно самому себе. Что это означает? Смысл этого закона состоит в утверждении того, что языковые выражения (будь то термин или целое высказывание) не могут менять своё значение в процессе рассуждения. Языковые знаки должны трактоваться однозначно, их употребление должно быть стабильным. Если я утверждаю, что какое-то высказывание истинно, например, что высказывание «Красота спасёт мир» истинно, я не могу следующим шагом утверждать, что оно ложно. И наоборот, если я утверждаю, что какое-то высказывание ложно, оно не может вдруг ни с того ни с сего превратиться в истинное. Рассуждение должно быть последовательным.

Чаще всего закон тождества нарушается при так называемой подмене понятий: в ходе рассуждения используется один и тот же термин, но значения в него вкладываются каждый раз разные. К примеру, возьмём следующее рассуждение: «Знание – сила. Сила – это векторная физическая величина, мера интенсивности воздействия на данное тело других тел и полей. Следовательно, знание – это векторная физическая величина, мера интенсивности воздействия на данное тело других тел и полей». Такое рассуждение не может быть верным, так как здесь нарушен принцип тождества: термин «сила» употребляется в первом и втором предложении в разных значениях.

Закон противоречия

Закон противоречия гласит: неверно, что А и не-А.

Построим таблицу истинности.

В первом столбце даны значения А («истина» и «ложь»). Соответственно, мы просто копируем эти значения в третий столбец. Значения для не-А в пятом столбце будут прямо обратными для значений А, поэтому получаем «ложь», «истина». В четвёртом столбце располагается конъюнкция между А и не-А. Она не может быть истинной ни в одном из случаев. Поэтому её значение всегда «ложь». Наконец, второй столбец представляет значение выражения полностью – это отрицание конъюнкции между А и не-А. Поскольку конъюнкция ложна, то её отрицание будет истинным. В итоге, мы видим, что выражение в целом всегда истинно.

Если же мы возьмём выражение типа «А и не-А», то оно как раз будет представлять собой противоречие. Из таблицы мы видим, что такое выражение всегда будет принимать значение «ложь».

Согласно закону противоречия (иногда его называют законом непротиворечия) невозможно, чтобы одновременно оказались истинными высказывание и его прямое отрицание: неверно, что снег идёт и в то же время не идёт, неверно, что Катя любит ананасы и не любит ананасы. Важно сделать следующее замечание: противоречия возникает только тогда, когда утверждение и отрицание делаются об одном и том же объекте, в одно и то же время, в одном и тот же отношении. Например, высказывания «Снег идёт на Северном полюсе, но снег не идёт в Зимбабве», «Толя ходил в кино вчера, а сегодня не ходил», «Катя любит ананасы, а Петя не любит ананасы», «Вася любит кататься на коньках и не любит кататься на лыжах» не являются противоречиями. Все они говорят либо о разных предметах, либо о разных временных отрезках, либо о разных аспектах одного предмета. Поэтому не всё, что выглядит как противоречие, действительно является таковым. Такие кажущиеся противоречия называют мнимыми. Пример мнимого противоречия можно найти в дзенской притче «Бокудзю и ручей»:

Один дзэнский монах, Бокудзю, говорил: «Иди и пересеки ручей, но не позволяй воде прикоснуться к тебе».
А через ручей около его монастыря не было никакого моста. Многие пытались сделать это, но когда они пересекали ручей, то, конечно же, вода прикасалась к ним. Поэтому однажды один монах пришел к нему и сказал:
— Вы задали нам неразрешимую задачу. Мы пытаемся пересечь этот ручей; через него нет никакого моста. Если бы был мост, то мы, конечно же, пересекли бы ручей, и вода не прикоснулась бы к нам. Но мы вынуждены идти через поток, и вода прикасается к нам.
И Бокудзю сказал:
— Я пойду и пересеку его, а вы наблюдайте.
И Бокудзю пересёк ручей. Вода, конечно, прикоснулась к его ногам, и они сказали:
— Смотрите, вода прикоснулась к вам!
Бокудзю сказал:
— Насколько я знаю, она не прикоснулась ко мне. Я был просто свидетелем. Вода прикоснулась к моим ногам, но не ко мне. Я был просто свидетельствующим.

Между тем, чтобы пересечь ручей без моста и не позволить воде прикоснуться к себе, нет противоречия, потому что в данном случае человеческое я рассматривает в разных отношениях: как тело, и как дух. Тело проходит через ручей и намокает, но дух остаётся безмятежным и не затронутым водой.

Как и закон тождества, закон противоречия требует от нас быть последовательными в рассуждениях. Либо мы принимаем, что высказывание истинно, либо мы принимаем, что оно ложно, но не то и другое вместе. Смешение истины и лжи приводит к тому, что всё рассуждение обесценивается, так как мы уже не можем быть уверены в сделанном выводе. Противоречия опасны потому, что с точки зрения логики из них можно вывести всё что угодно, то есть высказывание формы «Если А и не-А, то В» всегда будет истинным. Вы можете сами проверить это с помощью таблицы истинности. «Если дождь идёт, и дождь не идёт, то Чехов – автор “Войны и мира”». Если допускать противоречия, подобное «рассуждение» оказывается возможным. Поэтому логика ставит запрет на противоречия.

Нужно сказать, что противоречия бывают не только явными, но и скрытыми. Очевидно, что чаще всего никто старается не допускать в своём рассуждении наличия двух прямо противоположных высказываний. Однако, не редки случаи, когда противоречие прячется за вроде бы правильными формулировками. Приведём несколько примеров, которые хорошо это иллюстрируют: «Мы заставим их стать свободными», «Мы будем бороться за мир, и камня на камне не останется от нашей борьбы». Понятно, что идея свободы предполагает, что человека не заставляют, а он сам принимает решения, а идея мира предполагает отсутствия борьбы или войны.

Обычно появление противоречия – это знак того, что в рассуждение где-то закралась ошибка. Исправление этой ошибки, снимет и противоречие. Ошибка может скрываться в сделанных умозаключениях, но может содержаться и в изначально избранных посылках. По этой причине приведение к противоречию играет ключевую роль в так называемых доказательствах от противного. Наверное, все помнят их со школьных уроков геометрии. Доказательство от противного строится на том, что нужно обосновать какой-то тезис, но прямое его доказательство найти не получается. Тогда берётся его отрицание, и в определённый момент рассуждения мы наталкиваемся на противоречие, а это знак того, что отрицание тезиса было неверным. Так что противоречие может играть и позитивную роль в рассуждении.

В заключение, добавим, что в советской философии, превозносившей Маркса и Гегеля, появилось целое направление под названием «диалектическая логика», которая якобы допускала наличие противоречий и даже оценивала их положительно. Такая точка зрения строилась на том, что противоречия – это источник движения и развития, а потому это хорошо, если мы сталкиваемся с ними. Ещё и сегодня можно встретить людей, которые придерживаются подобного мнения. Однако нужно понимать, что речь здесь не идёт о противоречии в логическом смысле (как форме высказывания, которое при любой интерпретации принимает значение «ложь»). Скорее, под противоречием тут следует мыслить несовместимость, плохую сочетаемость ситуаций, феноменов, характеров и т.д. Так во Франции конца XVIII века желание буржуазии участвовать в политической жизни страны плохо сочеталось с формой правления абсолютной монархии, что в итоге привело к буржуазной революции. Можно сказать, что между ними возникло противоречие, но это не имеет никакого отношения к логике.

Закон исключённого третьего

Закон исключённого третьего имеет следующую форму: А или неверно, что А.

4brain.ru

Еще по теме:

  • Распечатать бланк договора купли продажи дома с земельным участком Договор купли продажи жилого дома с земельным участком Здесь вы можете посмотреть и скачать шаблон купли-продажи купли-продажи жилого дома с земельным участком за 2018 год в удобном для вас формате. Помните, что вы всегда можете получить нашу […]
  • Кадетская школа в москве с проживанием для девочек ОБРАЗОВАНИЕ В МОСКВЕ Информация, адреса, документы, отзывы . Гос. образование Частное образование Доп. образование Доп. развитие Кадетские школы Москвы Все Кадетские школы Москвы Кадетская школа - начальное военно-учебное […]
  • Спор овощей стихотворение тувим Сценка про овощи (на основе стихотворения Ю. Тувима «Овощи») Оксана Шмакова Сценка про овощи (на основе стихотворения Ю. Тувима «Овощи») СЦЕНКА ПРО ОВОЩИ (по Ю. Тувиму) Действующие лица: воспитатель, Хозяйка (в фартуке и с корзинкой, дети в масках […]
  • Как увеличить пенсию чернобыльцу Пенсия пострадавшим в результате радиационных и техногенных катастроф Для людей, относящихся к пострадавшим от радиационных и техногенных аварий и катастроф, назначаются ежемесячные выплаты в целях компенсации вреда. Особое внимание уделяется […]
  • Рациональный потребитель защита прав потребителей Рациональный потребитель Рациональный потребитель — это такой потребитель товаров и услуг, который стремиться к достижению как можно большей общей полезности от потребления товаров и услуг. Другими словами, рациональный потребитель в рамках своего […]
  • По истечении какого срока снимается судимость По истечении какого срока возможно досрочное снятие судимости? По истичению какого срока снимается судимость после освобождения по статье 161 ч. 2. Пункт а. г. Ответы юристов (3) Добрый вечер, уважаемый Алексей! В соответствии со ст. 86 УК […]