Закон ома джоуля ленца в дифференциальной форме

Пусть на участке электрической цепи протекает постоянный ток I (рис. 6.7.). Напряжение U на концах этого участка численно равно работе, совершаемой электрическими силами при перемещении единичного положительного заряда по этому участку. Это следует из определения напряжения (см. 3.16).

.

Отсюда работа A = q × U. За время t по участку будет перенесён заряд q = I × t и при этом будет совершена работа:

Это выражение работы электрического тока справедливо для любых проводников.

Работа, совершаемая в единицу времени — мощность электрического тока:

. (6.15)

В системе СИ мощность измеряется в ваттах:

1 Вт = 1 Дж/1 с = 1 В × 1 А.

Работа электрического тока (6.14) может затрачиваться на нагревание проводника, совершение механической работы (электродвигатель) и на химическое действие тока при его течении через электролит (электролиз).

Если химическое действие и механическая работа при течении тока не производятся, то вся работа электрического тока расходуется только на нагревание проводника:

Закон о тепловом эффекте электрического тока (6.15) был экспериментально установлен независимо английским учёным Д. Джоулем и русским академиком Э.Х. Ленцем. Формула (6.15) — математическая запись закона Джоуля-Ленца в интегральной форме, позволяющая вычислить количество теплоты, выделяющейся в проводнике. Для того, чтобы характеризовать тепловой эффект тока в различных точках проводника, выделим в нём элементарный участок трубки тока (рис. 6.8.). Запишем для этого элемента закон Джоуля-Ленца:

.

Здесь мы использовали хорошо известные соотношения:

— сопротивление участка;

i = lE — закон Ома в дифференциальной форме;

dV = dl × dS — объём выделенного элемента трубки тока.

Разделив количество выделившейся теплоты dQ на время dt, получим тепловую мощность электрического тока:

, .

Отнеся эту величину к объёму элемента трубки тока, придём к удельной тепловой мощности:

. (6.16)

Перед нами закон Джоуля-Ленца в дифференциальной форме.

Учитывая, что i = lE = , это выражение можно записать ещё и так:

, .

Подводя итог, ещё раз запишем формулы законов постоянного тока, рассмотренные на этой лекции.

Закон Ома для участка цепи:

в интегральной форме: ;

в дифференциальной форме: .

в интегральной форме: Q = I 2 × R × t;

в дифференциальной форме: Руд = × Е 2 =.

fizika-student.ru

Закон ома джоуля ленца в дифференциальной форме

Рассмотрим произвольный участок цепи, к концам которого приложено напряжение U. За время dt через каждое сечение проводника проходит заряд

При этом силы электрического поля, действующего на данном участке, совершают работу:

Разделив работу на время, получим выражение для мощности:

Полезно вспомнить и другие формулы для мощности и работы:

В 1841 г. манчестерский пивовар Джеймс Джоуль и в 1843 г. петербургский академик Эмилий Ленц установили закон теплового действия электрического тока.

Независимо друг от друга Джоуль и Ленц показали, что при протекании тока, в проводнике выделяется количество теплоты:

Если ток изменяется со временем, то

.

Это закон Джоуля–Ленца в интегральной форме.

Отсюда видно, что нагревание происходит за счет работы, совершаемой силами поля над зарядом.

Соотношение (7.7.4) имеет интегральный характер и относится ко всему проводнику с сопротивлением R, по которому течет ток I. Получим закон Джоуля-Ленца в локальной-дифференциальной форме, характеризуя тепловыделение в произвольной точке.

Тепловая мощность тока в элементе проводника Δl, сечением ΔS, объемом равна:

.

Удельная мощность тока

.

Согласно закону Ома в дифференциальной форме . Отсюда закон Джоуля — Ленца в дифференциальной форме характеризующий плотность выделенной энергии:

Так как выделенная теплота равна работе сил электрического поля

,

то мы можем записать для мощности тока:

Мощность, выделенная в единице объема проводника .

Приведенные формулы справедливы для однородного участка цепи и для неоднородного.

ens.tpu.ru

Методические указания к лабораторной работе №23


Загрузить всю книгу

3.1.3. Законы постоянного тока

1) Закон Ома – это экспериментальный закон, согласно которому сила тока, текущего по проводнику, пропорциональна напряжению на концах проводника и обратно пропорциональна его сопротивлению.

.

Соотношение (13) иначе называют законом Ома в интегральной форме записи. Это соотношение можно распространить на отдельные участки и всю замкнутую электрическую цепь, учитывая формулы (10), (11), (12) и внутреннее сопротивление источника тока r. При этом получим частные случаи закона Ома:

а) неоднородный участок цепи (рис. 2):

.

Формулу (14) называют обобщённым законом Ома в интегральной форме записи;

б) однородный участок цепи (рис. 3):

;

в) цепь замкнута (рис. 4) :

.

Электрическое сопротивление ( R ) характеризует противодействие проводника электрическому току и зависит от формы, размеров и материала проводника. Измеряется сопротивление R в омах (Ом).

Для однородного цилиндрического проводника длиной l и поперечным сечением S :

,

где ρ – удельное сопротивление проводника. Оно зависит от материала проводника и условий протекания тока, в частности, от температуры. Для большинства металлов при температурах, близких к комнатной, удельное сопротивление изменяется пропорционально температуре T:

,

где ρ0 – удельное сопротивление проводника при 0ºС (T = 273 К). Удельное сопротивление ρ измеряется в ом-метрах (Ом·м).

Закон Ома в дифференциальной форме записи можно получить, если рассмотреть бесконечно малый участок проводника длиной dl и поперечным сечением dS (рис. 5).

Рис. 5. К выводу закона Ома в дифференциальной форме записи (обозначения в тексте)

Сопротивление этого участка:

.

Напряжение на концах проводника dU , совпадающее с разностью потенциалов, связано с напряжённостью E электрического поля соотношением:

.

Через сечение dS течёт ток, плотность которого согласно соотношению (4):

.

Подставляя значения R и U по формулам (19) и (20) в закон Ома (13), получаем:

,

,

или, с учётом соотношения (21),

,

где – удельная проводимость проводника.

Учитывая, что направления и совпадают, соотношение (22) можно записать в векторном виде:

.

Это и есть дифференциальная форма записи закона Ома для однородного участка проводника. На неоднородном участке, кроме электростатического поля с напряжённостью , действует поле сторонних сил, напряжённость которого – стор; в этом случае:

.

Соотношение (24) является законом Ома в дифференциальной форме записи для неоднородного участка проводника.

2) Закон Джоуля-Ленца характеризует тепловое действие тока. При протекании электрического тока проводник нагревается, при этом выделяется количество теплоты Q т, определяемое соотношениями:

.

3) Правила Кирхгофа значительно упрощают расчёт разветвлённых электрических цепей. Пример такой цепи показан на рис. 6.

Рис. 6. Разветвлённая электрическая цепь

Правил Кирхгофа два:

а) I правило Кирхгофа относится к узлам электрической цепи.

Узлом цепи называется точка, в которой сходится не менее трёх проводни­ков. В схеме на рис. 6 два узла – В и К.

Согласно I правилу Кирхгофа алгебраическая сумма сил токов, сходящихся в узле, равна нулю:

.

Прежде чем применять I правило Кирхгофа, необходимо проставить направления токов и значения сил токов в различных ветвях электрической цепи (ветвь – участок цепи, соединяющий узлы). Если трудно указать истинное направление тока, его проставляют произвольно. Если направление тока на каком-то участке проставлено неверно, то значение силы тока на этом участке в результате решения задачи получается отрицательным. Условились считать, что токи, входящие в узел (текущие к узлу), считаются положительными, и при записи соотношения (26) берутся со знаком «+», а токи, выходящие из узла, – со знаком «–». Например, для узла К соотношение (26) примет вид:

.

I правило Кирхгофа является следствием закона сохранения заряда для цепей постоянного электрического тока. В случае постоянного тока заряды в узлах накапливаться не должны, и количество зарядов, входящих в узел, должно равняться количеству зарядов, выходящих из узла. Если в цепи N узлов, то линейно независимых уравнений можно записать только для ( N –1) узла, уравнение для N -ого узла будет следствием предыдущих. Например, уравнение для узла В (рис. 6) будет повторением уравнения (27);

б) II правило Кирхгофа является следствием закона Ома и относится к любому выделенному в разветвлённой цепи замкнутому контуру.

Согласно этому правилу сумма падений напряжений равна сумме действующих в контуре ЭДС:

.

Так как по закону Ома , то соотношение (28) можно записать так:

.

Прежде чем применять II правило Кирхгофа к какому-либо контуру, в нём совершенно произвольно выбирается направление обхода (например, по часовой стрелке). При этом напряжение считается положительным и берётся в уравнении (29) со знаком «+», если ток на данном сопротивлении совпадает с направлением обхода контура. ЭДС источника берётся в уравнении (29) со знаком «+», если источник создаёт ток (при условии, что других источников тока нет) в направлении обхода контура. Например, II правило Кирхгофа для контура АМКВ (рис. 6) будет иметь следующий вид:

.

Видим, что удобнее было бы взять направление обхода контура в противоположную сторону.

Для контура ВКДС соотношение (29) запишется так:

.

Уравнение (29) может быть составлено для всех замкнутых контуров, которые можно выделить в разветвлённой цепи (на рис. 6 их три: АМКВ, ВКДС, АМДС). Однако независимыми будут уравнения только для тех контуров, которые нельзя получить наложением других, уже использованных (например, контур АМДС является суммой контуров АМКВ и ВКДС). Оказывается, что количество независимых уравнений, составленных в соответствии с I и II правилами Кирхгофа, равно числу различных токов, текущих в разветвлённой электрической цепи. Решая совместно уравнения (27), (30), (31), можно найти любые три неизвестные характеристики электрической цепи, показанной на рис. 6.

edu.tltsu.ru

Законы ома и джоуля — ленца

Схема этих опытов такова. На катушку наматывают проволоку, концы которой припаивают к двум металлическим дискам, изолированным друг от друга (рис. 8.4). К концам дисков при помощи скользящих контактов присоединяют гальванометр.

Катушку приводят в быстрое вращение, а затем резко останавливают. После резкой остановки катушки свободные заряженные частицы будут некоторое время двигаться относительно проводника по инерции, и, следовательно, в катушке возникнет электрический ток. Ток будет существовать незначительное время, так как из-за сопротивления проводника заряженные частицы тормозятся и упорядоченное движение частиц, образующее ток, прекращается.

Наблюдения показали, что в цепи после остановки катушки некоторое время существует ток. Направление его говорит о том, что он создается движением отрицательно заряженных частиц. Переносимый при этом заряд пропорционален отношению заряда частиц, создающих ток, к их массе, т. е. . Поэтому, измеряя заряд, проходящий через гальванометр за все время существования тока в цепи, удалось определить отношение . Оно оказалось равным 1,8 × 1011 Кл/кг. Эта величина совпадает с отношением заряда электрона к его массе e/m, найденным ранее из других опытов.

8.4. Законы Ома и Джоуля — Ленца в дифференциальной форме

При прохождении электрического тока по проводнику совершается работа A=qU, которая по закону сохранения и превращения энергии идет на нагревание проводника. Если ток постоянный, то q=It, тогда

Это математическое представление закона Джоуля — Ленца.

Мощность, выделяемая в цепи, равна:

. (8.8)

Выделим в веществе элементарный отрезок и применим к нему закон Ома для участка цепи:

.

Подставив данные выражения в формулу закона Ома, получим:

где – удельная проводимость проводника.

В векторной форме

Это и есть запись закона Ома в дифференциальной форме. Итак, плотность тока прямо пропорциональна напряженности электрического поля.

Получим закон Джоуля — Ленца в дифференциальной форме:

По определению, мощность тока:

– объемная плотность мощности. Тогда закон Джоуля — Ленца в дифференциальной форме запишется :

т. е. объемная плотность мощности тока прямо пропорциональна квадрату напряженности электрического поля.

Сверхпроводники 1-го и 2-го рода.

По своему поведению в магнитных полях сверхпроводники разделяются на сверхпроводники 1-го и 2-го рода. Сверхпроводники 1-го рода обнаруживают те идеальные свойства, о которых уже говорилось. В присутствии магнитного поля в поверхностном слое сверхпроводника возникают токи, которые полностью компенсируют внешнее поле в толще образца. Если сверхпроводник имеет форму длинного цилиндра и находится в поле, параллельном его оси, то глубина проникновения может быть порядка 3*10–6 см. При достижении критического поля сверхпроводимость исчезает, и поле полностью проникает внутрь материала. Критические поля для сверхпроводников 1-го рода лежат обычно в пределах от 100 до 800 Тл. Хотя у сверхпроводников 1-го рода малая глубина прони

fiziku5.ru

1.Понятие о токе

Определение: Направленное (упорядоченное) движение заряженных частиц называется электрическим током.

Если речь идет о движении микрочастиц, то говорят о токе проводимости. А, если о движении макрочастиц, то говорят о токе конвекции.

Исторически сложилось, что за направление тока принимают направление движения положительно заряженных частиц.

2.Плотность тока и сила тока

Для характеристики постоянного тока вводят две физические величины: векторную – плотность тока и скалярную – сила тока.

Определение: Плотностью тока называется физическая величина, определяющая заряд, прошедший через площадку dS за время dt следующим образом.

Пусть все частицы одинаковые и имеют заряд q и скорость υ, которая называется средней или упорядоченной или дрейфовой скоростью.




Определение: Силой тока называется поток плотности тока через какую-либо поверхность.

Силу тока можно определять как заряд, прошедший через поперечное сечение проводника за время Δt. Данное выражение используется для определения единицы заряда.

3.Единицы силы и плотности тока

Определение: 1 Ампер – единица СИ электрического тока, равная силе такого неизменяющегося тока, который при прохождении по двум бесконечно длинным проводникам ничтожно малой площади поперечного сечения вызывает силу взаимодействия между ними 2·10 -7 Н на 1 м длины.

Плотность тока измеряется в А/м 2 .

4.Действия электрического тока

Непосредственно наблюдать электрический ток нельзя. О его существовании судят по макроскопическим проявлениям.

Измерительные приборы, определяющие ток.

Приборы нагревательных элементов.

Происходят химические превращения при протекании тока.

5.Уравнение непрерывности

Закон сохранения заряда утверждает, что в замкнутой системе заряд сохраняется. Если система не замкнута, то заряд может изменяться.



Данное уравнение называется уравнением непрерывности в интегральной форме. Производная по времени связана с временной зависимостью заряда. Данное уравнение считается постулатом. По смыслу – это закон изменения заряда.

Используя понятие объемной плотности заряда и формулу Остроградского-Гаусса

– уравнение непрерывности в дифференциальной форме.

Если ток постоянный, то , следовательно, линии плотности тока являются замкнутыми.

6.Поле в проводнике при постоянном токе

Если есть ток, значит, есть движение зарядов, следовательно, есть сила, которая заставляет двигаться заряды, есть ток, есть напряженность, которая направлена вдоль тока. В общем случае напряженность направлена под углом к поверхности. Если есть напряженность, то градиент потенциала вдоль проводника не равен нулю, следовательно, потенциал вдоль проводника изменяется. Говорят о падении потенциала.

7.Закон Ома в дифференциальной форме

Плотность тока и напряженность вдоль проводника взаимосвязаны между собой. Разумно предположить, что это самая простая связь, т.е. линейная.

где σ – удельная электропроводность.

Данный закон является постулатом.

Для металлов закон выполняется почти всегда, для полуметаллов начинаются отклонения при очень больших плотностях тока. Для других линейную связь можно заменить тензорной и закон Ома замыкает уравнения Максвелла.

Из этого соотношения следует, что линии плотности тока и линии напряженности при постоянном токе совпадают, а, следовательно, распределение полей можно изучать по распределению тока (метод электролитической ванны).

8.Закон Ома в интегральной форме.

Наряду с удельной электропроводностью, вводят понятие удельного сопротивления.



Сила тока I вдоль проводника не изменяется.

Интеграл в левой части назовем сопротивлением проводника между точками 1 и 2.



– напряжение между точками электрической цепи.

– закон Ома в интегральной форме.

9.Сопротивление и проводимость.

Сопротивление зависит от геометрии и от вещества, из которого сделан проводник.

Для цилиндрического проводника одинакового поперечного сечения оно вычисляется особенно просто.


Измерив сопротивление, можно вычислить ёмкость и наоборот.

Данное устройство иногда называется конденсатором с утечкой.

По физическому смыслу, удельное сопротивление – это сопротивление куба вещества с ребром 1 м, если подводящие провода подключены к центрам противоположных граней.

tsput.ru

Еще по теме:

  • Пусть точка движется прямолинейно по закону s 3t 5 Пусть точка движется прямолинейно по закону s 3t 5 26 июняНовые варианты прошедших ЕГЭ по математике: здесь. 5 июня Наши мобильные приложения могут работать оффлайн. Андроид iOS − Учитель Думбадзе В. А. из школы 162 Кировского района Петербурга. […]
  • Налог на имущество 2 квартал 2014 Утверждены новые коды отчетных периодов в расчете по авансовым платежам по налогу на имущество организаций Об этом сообщает на своем официальном сайте ФНС России. Налоговики рассказали, какие коды отчетного периода нужно указать при заполнении […]
  • 3-я группа инвалидности начисление пенсии Пенсия по инвалидности 3 группы в 2018 году Те граждане, кто в силу состояния своего здоровья, не может боле трудиться по своей профессии, но способен выполнять другую, более простую работу либо работать по своей первоначальной специальности, но в […]
  • Пособия на детей в россии 2014 в россии Ежемесячное пособие на ребенка, установленное в субъекте РФ Каждый регион определяет размер, порядок назначения и выплаты такого пособия самостоятельно. К примеру, в Москве региональное ежемесячное пособие на ребенка установлено для семей с доходом […]
  • Штрафы налоги выезд за границу Запрет на выезд за границу. Как проверить свои долги Последнее время нам часто напоминают про необходимость своевременной оплаты налогов и штрафов, одновременно пугая неприятными последствиями. Долги по кредитам и другим финансовым обязательствам […]
  • Ребенок 6 лет наказание Воспитание детей 6 - 7 лет Период 6-7 лет - возраст перемен: ребенок находится на границе между старшим дошкольником и младшим школьником. Его поведение заметно меняется, ребенок уже четко усвоил социальные нормы и правила поведения, он становится […]