Закон эми для катушки

Электромагнитной индукцией называют такое явление, как возникновение электрического тока в замкнутом контуре, при условии изменения магнитного потока, который проходит через этот контур.

Закон электромагнитной индукции Фарадея записывается такой формулой:

Каким же образом ученым удалось вывести такую формулу и сформулировать этот закон? Мы с вами уже знаем, что вокруг проводника с током всегда существует магнитное поле, а электричество обладает магнитной силой. Поэтому в начале 19го века и возникла задача о необходимости подтверждения влияния магнитных явлений на электрические, которую пытались решить многие ученые, и английский ученый Майкл Фарадей был в их числе. Почти 10 лет, начиная с 1822 года, он потратил на различные опыты, но безуспешно. И только 29 августа 1831 года наступил триумф.

После напряженных поисков, исследований и опытов, Фарадей пришел к выводу, что только меняющееся со временем магнитное поле может создать электрический ток.

Опыты Фарадей

Опыты Фарадей состояли в следующем:

• Во-первых, если взять постоянный магнит и двигать его внутри катушки, к которой присоединен гальванометр, то в цепи возникал электрический ток.
• Во-вторых, если этот магнит выдвигать из катушки, то мы наблюдаем, что гальванометр так же показывает ток, но этот ток имеет противоположное направление.

А теперь давайте попробуем этот опыт немного изменить. Для этого мы попробуем на неподвижный магнит одевать и снимать катушку. И что мы в итоге видим? А мы с вами наблюдаем то, что во время движения катушки относительно магнита в цепи снова появляется ток. А если в катушке прекратилось, то и ток сразу же исчезает.

Теперь давайте проделаем еще один опыт. Для этого мы с вами возьмем и поместим в магнитное поле плоский контур без проводника, а его концы попробуем соединить с гальванометром. И что мы наблюдаем? Как только контур гальванометр поворачивается, то мы наблюдаем появление в нем индукционного тока. А если попробовать вращать магнит внутри него и рядом с контуром, то в этом случае также появится ток.

Думаю, вы уже заметили, ток появляется в катушке тогда, когда изменяется магнитный поток, который пронизывает эту катушку.

И тут возникает вопрос, при всяких ли движениях магнита и катушки, может возникнуть электрический ток? Оказывается не всегда. Ток не возникнет в том случае, когда магнит вращается вокруг вертикальной оси.

А из этого следует, что при любом изменении магнитного потока, мы наблюдаем то, что в этом проводнике возникает электрический ток, который существовал в течении всего процесса, пока происходили изменения магнитного потока. Именно в этом и заключается явление электромагнитной индукции. А индукционным током является тот ток, который был получен данным методом.

Если мы с вами проанализируем данный опыт, то увидим, что значение индукционного тока совершенно не зависит от причины изменения магнитного потока. В данном случае, первостепенное значение имеет лишь скорость, которая влияет на изменения магнитного потока. Из опытов Фарадея следует, что чем быстрее двигается магнит в катушке, тем больше отклоняется стрелка гальванометра.

Теперь мы можем подвести итог данного урока и сделать вывод, что закон электромагнитной индукции является одним из основных законом электродинамики. Благодаря изучению явлений электромагнитной индукции, учеными разных стран были созданы различные электродвигатели и мощные генераторы. Огромный вклад в развитие электротехники внесли и такие известные ученые, как Ленц, Якоби, и другие.

Интересные факты

А знали ли вы, что, будучи знаменитым ученым, Фарадей к математике не имел никакого отношения, так как все свои теории он доказывал с помощью опытов и экспериментов и при этом не делал никаких математических вычислений.

edufuture.biz

Электромагнитная индукция

Возникновение в проводнике ЭДС индукции

Если поместить в магнитное поле проводник и перемещать его так, чтобы он при своем движении пересекал силовые линии поля, то в проводнике возникнет электродвижущая сила, называемая ЭДС индукции .

ЭДС индукции возникнет в проводнике и в том случае, если сам проводник останется неподвижным, а перемещаться будет магнитное поле, пересекая проводник своими силовыми линиями.

Если проводник, в котором наводится ЭДС индукции, замкнуть на какую-либо внешнюю цепь, то под действием этой ЭДС по цепи потечет ток, называемый индукционным током.

Явление индуктирования ЭДС в проводнике при пересечении его силовыми линиями магнитного поля называется электромагнитной индукцией .

Электромагнитная индукция — это обратный процесс, т. е. превращение механической энергии в электрическую.

Явление электромагнитной индукции нашло широчайшее применение в электротехнике. На использовании его основано устройство различных электрических машин.

Величина и направление ЭДС индукции

Рассмотрим теперь, каковы будут величина и направление индуктированной в проводнике ЭДС.

Величина ЭДС индукции зависит от количества силовых линий поля, пересекающих проводник в единицу времени, т. е. от скорости движения проводника в поле.

Величина индуктированной ЭДС находится в прямой зависимости от скорости движения проводника в магнитном поле.

Величина индуктированной ЭДС зависит также и от длины той части проводника, которая пересекается силовыми линиями поля. Чем большая часть проводника пересекается силовыми линиями поля, тем большая ЭДС индуктируется в проводнике. И, наконец, чем сильнее магнитное поле, т. е. чем больше его индукция, тем большая ЭДС возникает в проводнике, пересекающем это поле.

Итак, величина ЭДС индукции, возникающей в проводнике при его движении в магнитном поле, прямо пропорциональна индукции магнитного поля, длине проводника и скорости его перемещения.

Зависимость эта выражается формулой Е = Blv,

где Е — ЭДС индукции; В — магнитная индукция; I — длина проводника; v — скорость движения проводника.

Следует твердо помнить, что в проводнике, перемещающемся в магнитном поле, ЭДС индукции возникает только в том случае, если этот проводник пересекается магнитными силовыми линиями поля. Если же проводник перемещается вдоль силовых линий поля, т. е. не пересекает, а как бы скользит по ним, то никакой ЭДС в нем не индуктируется. Поэтому приведенная выше формула справедлива только в том случае, когда проводник перемещается перпендикулярно магнитным силовым линиям поля.

Направление индуктированной ЭДС (а также и тока в проводнике) зависит от того, в какую сторону движется проводник. Для определения направления индуктированной ЭДС существует правило правой руки.

Если держать ладонь правой руки так, чтобы в нее входили магнитные силовые линии поля, а отогнутый большой палец указывал бы направление движения проводника, то вытянутые четыре пальца укажут направление действия индуктированной ЭДС и направление тока в проводнике.

Правило правой руки

ЭДС индукции в катушке

Мы уже говорили, что для создания в проводнике ЭДС индукции необходимо перемещать в магнитном поле или сам проводник, или магнитное поле. В том и другом случае проводник должен пересекаться магнитными силовыми линиями поля, иначе ЭДС индуктироваться не будет. Индуктированную ЭДС, а следовательно, и индукционный ток можно получить не только в прямолинейном проводнике, но и в проводнике, свитом в катушку.

При движении внутри катушки постоянного магнита в ней индуктируется ЭДС за счет того, что магнитный поток магнита пересекает витки катушки, т. е. точно так же, как это было при движении прямолинейного проводника в поле магнита.

Если магнит опускать в катушку медленно, то возникающая в ней ЭДС будет настолько мала, что стрелка прибора может даже не отклониться. Если же, наоборот, магнит быстро ввести в катушку, то отклонение стрелки будет большим. Значит, величина индуктируемой ЭДС, а следовательно, и сила тока в катушке зависят от скорости движения магнита, т. е. от того, насколько быстро силовые линии поля пересекают витки катушки. Если теперь поочередно вводить в катушку с одинаковой скоростью сначала сильный магнит, а затем слабый, то можно заметить, что при сильном магните стрелка прибора будет отклоняться на больший угол. Значит, величина индуктируемой ЭДС, а следовательно, и сила тока в катушке зависят от величины магнитного потока магнита.

И, наконец, если вводить с одинаковой скоростью один и тот же магнит сначала в катушку с большим числом витков, а затем со значительно меньшим, то в первом случае стрелка прибора отклонится на больший угол, чем во втором. Значит, величина индуктируемой ЭДС, а следовательно, и сила тока в катушке зависят от числа ее витков. Те же результаты можно получить, если вместо постоянного магнита применять электромагнит.

Направление ЭДС индукции в катушке зависит от направления перемещения магнита. О том, как определять направление ЭДС индукции, говорит закон, установленный Э. X. Ленцем.

Закон Ленца для электромагнитной индукции

Всякое изменение магнитного потока внутри катушки сопровождается возникновением в ней ЭДС индукции, причем чем быстрее изменяется магнитный поток, пронизывающий катушку, тем большая ЭДС в ней индуктируется.

Если катушка, в которой создана ЭДС индукции, замкнута на внешнюю цепь, то по виткам ее идет индукционный ток, создающий вокруг проводника магнитное поле, в силу чего катушка превращается в соленоид. Получается таким образом, что изменяющееся внешнее магнитное поле вызывает в катушке индукционный ток, которой, в свою очередь, создает вокруг катушки свое магнитное поле — поле тока.

Изучая это явление, Э. X. Ленц установил закон, определяющий направление индукционного тока в катушке, а следовательно, и направление ЭДС индукции. ЭДС индукции, возникающая в катушке при изменении в ней магнитного потока, создает в катушке ток такого направления, при котором магнитный поток катушки, созданный этим током, препятствует изменению постороннего магнитного потока.

Закон Ленца справедлив для всех случаев индуктирования тока в проводниках, независимо от формы проводников и от того, каким способом достигается изменение внешнего магнитного поля.

При движении постоянного магнита относительно проволочной катушки, присоединенной к клеммам гальванометра, или при движении катушки относительно магнита возникает индукционный ток.

Индукционные токи в массивных проводниках

Изменяющийся магнитный поток способен индуктировать ЭДС не только в витках катушки, но и в массивных металлических проводниках. Пронизывая толщу массивного проводника, магнитный поток индуктирует в нем ЭДС, создающую индукционные токи. Эти так называемые вихревые токи распространяются по массивному проводнику и накоротко замыкаются в нем.

Сердечники трансформаторов, магнитопроводы различных электрических машин и аппаратов представляют собой как раз те массивные проводники, которые нагреваются возникающими в них индукционными токами. Явление это нежелательно, поэтому для уменьшения величины индукционных токов части электрических машин и сердечники трансформаторов делают не массивными, а состоящими из тонких листов, изолированных один от другого бумагой или слоем изоляционного лака. Благодаря этому преграждается путь распространения вихревых токов по массе проводника.

Но иногда на практике вихревые токи используются и как токи полезные. На использовании этих токов основана, например, работа индукционных нагревательных печей, счетчиков электрической энергии и так называемых магнитных успокоителей подвижных частей электроизмерительных приборов.

electricalschool.info

Практическое применение закона электромагнитной индукции Фарадея

Словом «индукция» в русском языке обозначает процессы возбуждения, наведения, создания чего-либо. В электротехнике этот термин применяется уже более двух столетий.

После знакомства с публикациями 1821 года, описывающими опыты датского ученого Эрстеда об отклонениях магнитной стрелки около проводника с электрическим током, Майкл Фарадей поставил перед собой задачу: преобразовать магнетизм в электричество .

Через 10 лет исследований он сформулировал основной закон электромагнитной индукции, объяснив, что внутри любого замкнутого контура наводится электродвижущая сила. Ее величина определяется скоростью изменения магнитного потока, пронизывающего рассматриваемый контур, но взятую со знаком минус.

Передача электромагнитных волн на расстояние

Первая догадка, которая осенила мозг ученого, не увенчалась практическим успехом.

Он расположил рядом два замкнутых проводника. Около одного установил магнитную стрелку в качестве индикатора проходящего тока, а в другой провод подал импульс от мощного гальванического источника того времени: вольтова столба.

Исследователь предполагал, что при импульсе тока в первом контуре изменяющееся в нем магнитное поле наведет во втором проводнике ток, который отклонит магнитную стрелку. Но, результат оказался отрицательным — индикатор не сработал. Вернее, ему не хватило чувствительности.

Мозг ученого предвидел создание и передачу электромагнитных волн на расстояние, которые сейчас используются в радиовещании, телевидении, беспроводном управлении, Wi-Fi технологиях и подобных устройствах. Его просто подвела несовершенная элементная база измерительных устройств того времени.

После проведения неудачного опыта Michael Faraday видоизменил условия эксперимента.

Для опыта Фарадей использовал две катушки с замкнутыми контурами. В первый контур он подавал электрический ток от источника, а во втором наблюдал за появлением ЭДС. Проходящий по виткам обмотки №1 ток создавал вокруг катушки магнитный поток, пронизывающий обмотку №2 и образовывающий в ней электродвижущую силу.

Во время эксперимента Фарадей:

  • включал импульсом подачу напряжения в цепь при неподвижных катушках;
  • при поданном токе вводил в нижнюю катушку верхнюю;
  • закреплял стационарно обмотку №1 и вводил в нее обмотку №2;
  • изменял скорость перемещения катушек относительно друг друга.

Во всех этих случаях он наблюдал проявление ЭДС индукции во второй катушке. И лишь при прохождении постоянного тока по обмотке №1 и неподвижных катушках наведения электродвижущей силы не было.

Ученый определил, что наводимая во второй катушке ЭДС зависит от скорости, с которой меняется магнитный поток. Она пропорциональна его величине.

Эта же закономерность полностью проявляется при прохождении замкнутого витка сквозь силовые магнитные линии поля постоянного магнита. Под действием ЭДС в проводе образуется электрический ток.

Магнитный поток в рассматриваемом случае изменяется в контуре Sк, созданном замкнутой цепью.

Таким способом созданная Фарадеем разработка позволила поместить в магнитное поле вращающуюся токопроводящую рамку.

Ее затем сделали из большого количества витков, закрепили в подшипниках вращения. По концам обмотки вмонтировали токосъемные кольца и щетки, скользящие по ним, а через выводы на корпусе подключили нагрузку. Получился современный генератор переменного тока.

Его более простая конструкция создалась тогда, когда обмотку закрепили на стационарном корпусе, а вращать стали магнитную систему. В этом случае способ образования токов за счет электромагнитной индукции никак не нарушался.

Принцип работы электродвигателей

Закон электромагнитной индукции, который обсновал Michael Faraday, позволил создать различные конструкции электрических двигателей. Они имеют сходное устройство с генераторами: подвижный ротор и статор, которые взаимодействуют между собой за счет вращающихся электромагнитных полей.

Только через обмотку статора электродвигателя пропускают электрический ток. Он индуцирует магнитный поток, влияющий на магнитное поле ротора. В результате возникают силы, раскручивающие вал двигателя. Смотрите по этой теме — Принцип действия и устройство электродвигателя

Майкл Фарадей определил возникновение наведенной электродвижущей силы и индукционного тока в рядом расположенной обмотке при изменении магнитного поля в соседней катушке.

Ток внутри близлежащей обмотки наводится при коммутациях цепи выключателя в катушке 1 и всегда присутствует во время работы генератора на обмотку 3.

На этом свойстве, получившем название взаимоиндукции , основана работа всех современных трансформаторных устройств.

У них для улучшения прохождения магнитного потока изолированные обмотки надеты на общий сердечник, обладающий минимальным магнитным сопротивлением. Его изготавливают из специальных сортов стали и формируют наборными тонкими листами в виде секций определенной формы, называют магнитопроводом.

Трансформаторы передают за счет взаимоиндукции энергию переменного электромагнитного поля из одной обмотки в другую так, что при этом происходит изменение, трансформация величины напряжения на входных и выходных его клеммах.

Соотношение количества витков в обмотках определяет коэффициент трансформации , а толщина провода, конструкция и объем материала сердечника — величину пропускаемой мощности, рабочий ток.

Проявление электромагнитной индукции наблюдается в катушке во время изменения в ней величины протекающего тока. Этот процесс получил название самоиндукции .

При включении выключателя на приведенной схеме индукционный ток видоизменяет характер прямолинейного нарастания рабочего тока в цепи, как и во время отключения.

Когда же к проводнику, смотанному в катушку, прикладывается не постоянное, а переменное напряжение, то через нее протекает уменьшенное индуктивным сопротивлением значение тока. Энергия самоиндукции сдвигает по фазе ток относительно приложенного напряжения.

Это явление используется в дросселях, которые предназначены для уменьшения больших токов, возникающих при определенных условиях работы оборудования. Такие устройства, в частности, применяются в схеме зажигания люминесцентных ламп.

Конструктивная особенность магнитопровода у дросселя — разрез пластин, который создается для дополнительного повышения магнитного сопротивления магнитному потоку за счет образования воздушного зазора.

Дроссели с разрезным и регулируемым положением магнитопровода используются во многих радиотехнических и электрических устройствах. Довольно часто их можно встретить в конструкциях сварочных трансформаторов. Ими уменьшают величину электрической дуги, пропускаемой через электрод, до оптимального значения.

Явление электромагнитной индукции проявляется не только в проводах и обмотках, но и внутри любых массивных металлических предметов. Наводимые в них токи принято называть вихревыми. При работе трансформаторов и дросселей они вызывают нагрев магнитопровода и всей конструкции.

Для предотвращения этого явления сердечники изготавливают из тонких металлических листов и изолируют между собой слоем лака, препятствующим прохождению наведенных токов.

В обогревательных конструкциях вихревые токи не ограничивают, а создают для их прохождения наиболее благоприятные условия. Индукционные печи широко применяются в промышленном производстве для создания высоких температур.

Электротехнические измерительные устройства

В энергетике продолжает работать большой класс индукционных приборов. Электрические счетчики с вращающимся алюминиевым диском, аналогичные конструкции реле мощности, успокоительные системы стрелочных измерительных приборов функционируют на основе принципа электромагнитной индукции.

Газовые магнитные генераторы

Если вместо замкнутой рамки в поле магнита перемещать токопроводящий газ, жидкость или плазму, то заряды электричества под действием магнитных силовых линий станут отклоняться в строго определенных направлениях, формируя электрический ток. Его магнитное поле на смонтированных электродных контактных пластинах наводит электродвижущую силу. Под ее действием в подключенной цепи к МГД-генератору создается электрический ток.

Так закон электромагнитной индукции проявляется в МГД-генераторах.

Здесь нет таких сложных вращающихся частей, как ротор. Это упрощает конструкцию, позволяет значительно повышать температуру рабочей среды, а, заодно и эффективность выработки электроэнергии. МГД-генераторы работают в качестве резервных либо аварийных источников, способных вырабатывать значительные потоки электроэнергии в малые промежутки времени.

Таким образом, закон электромагнитной индукции, обоснованный Майклом Фарадеем в свое время продолжает оставаться актуальным в наши дни.

electricalschool.info

Закон эми для катушки

§3. Закон электромагнитной индукции. Правило Ленца

Пусть произвольный контур с током находится во внешнем магнитном поле. Из принципа суперпозиции магнитных полей и определения магнитного потока следует, что полный магнитный поток `»Ф»`, пронизывающий контур, состоит из потока от внешнего поля `»Ф»_»внеш»` и потока от собственного поля `»Ф»_»соб»`:

При этом внешний магнитный поток `»Ф»_»внеш»` может изменяться со временем как из-за изменения внешнего магнитного поля во времени (в каждой точке поля индукция внешнего магнитного поля зависит от времени), так и из-за движения контура или отдельных его частей. Собственный магнитный поток `»Ф»_»соб»` может тоже меняться со временем в результате изменения тока в контуре по каким-либо причинам и в результате изменения индуктивности контура (при его деформации, например).

Опытным путём установлено, что независимо от причин, вызывающих изменение полного магнитного потока через контур, в контуре возникает электродвижущая сила, называемая электродвижущей силой индукции:

`=-(d»Ф»)/(dt)`. (4)

Здесь направление нормали к контуру и положительное направление обхода контура, связанные друг с другом правилом буравчика, определяют знак `»Ф»` и ЭДС индукции положительна, если направление её действия совпадает с положительным направлением обхода контура, и отрицательна в противном случае. Под направлением действия ЭДС на некотором участке цепи будем понимать направление действия вдоль этого участка сторонних сил на положительные заряды, т. е. то направление, в котором потечёт ток через участок цепи с ЭДС при мысленном замыкании этого участка резистором.

Равенство (4) и представляет собой математическую запись закона электромагнитной индукции Фарадея. Производную `(d»Ф»)/(dt)` называют скоростью изменения магнитного потока.

Из равенств (3) и (4) получаем:

`=-(d»Ф»_»внеш»)/(dt)-(d»Ф»_»соб»)/(dt)`. (5)

Слагаемое `-(d»Ф»_»внеш»)/(dt)` представляет собой ЭДС индукции, возникающую из-за изменения внешнего магнитного потока. Если собственное поле можно не учитывать (пренебрегать индуктивностью), то ЭДС индукции в контуре определяется только первым слагаемым. Ещё раз подчеркнём, что это слагаемое обусловлено как изменением внешнего поля во времени, так и движением контура или его частей во внешнем поле.

`=-(d»Ф»_»соб»)/(dt)=-(d(LI))/(dt)=-L(dI)/(dt)-I(dL)/(dt)` (6)

называется ЭДС самоиндукции, т. к. оно появляется благодаря изменению во времени собственного магнитного потока через контур. Напомним, что изменение собственного магнитного потока может происходить как за счёт изменения тока (по каким-либо причинам), так и за счёт изменения индуктивности контура.

Если индуктивность остаётся постоянной во времени, то равенство (6) принимает вид:

`=-L(dI)/(dt)`. (7)

Затронем часто встречающийся при решении задач вопрос о том, пренебрегать или нет индуктивностью контура. Этот вопрос в каждом конкретном случае должен решаться отдельно на основании вклада, даваемого в общую ЭДС каждым слагаемым в формуле (5). Чаще всего индуктивностью контура в виде одного витка или рамки, состоящей из малого числа витков, можно пренебречь. А вот индуктивностью контура, состоящего из значительного числа витков, например катушки, пренебрегать не стоит. Одним из критериев для оценки роли индуктивности может служить сравнение величин внешнего магнитного поля и собственного поля контура, а точнее, сравнение изменений величин этих полей за время наблюдения.

Заметим, что в формуле (4) знаки ЭДС индукции и изменения магнитного потока `d»Ф»` противоположны: если `d»Ф»>0`, то `

zftsh.online

Глава 16. Электромагнитная индукция.

§ 16.1 Закон электромагнитной индукции. Правило Ленца

Мы знаем, что электрическое поле в проводнике создаёт ток, а ток порождает магнитное поле. Таким образом, электрическое поле создаёт магнитное поле. Но справедливо и обратное утверждение – с помощью магнитного поля можно создать электрическое поле.

Экспериментально это доказывается опытами Фарадея. Если вносить и выносить магнит в катушку, соединённую с амперметром, то через амперметр будет течь электрический ток (рис. 16.1). Если же магнит внести в катушку и оставить его неподвижно, то тока не будет. Впервые этот опыт проделал М.Фарадей в 1831г.

Это явление было названо электромагнитной индукцией (индукция – значит наведение). Ток, возникающий при электромагнитной индукции, называют индукционным.

Рассмотрим возникновение ЭДС индукции, а следовательно, и индукционного тока. Пусть проводник без тока длиной ℓ движется в магнитном поле со скоростью υ (рис.16.2). Магнитное поле однородно. Вектор магнитной индукции однородного магнитного поля В. При движении проводника свободные электроны, содержащиеся в нём, будут также двигаться в туже сторону, т.е. возникает конвекционный ток. Направление этого тока противоположно направлению движения электронов. На каждый движущийся электрон со стороны магнитного поля действует сила Лоренца Fл. Электроны под действием этой силы движутся слева направо и в правой части проводника длиной ℓ будут накапливаться отрицательные заряды, а в левой — положительные. В результате этого образуется разность потенциалов φ1 –φ2; таким образом в проводнике возникает электрическое поле напряжённостью Е, которое препятствует дальнейшему перемещению электронов.

Заряды перестают перемещаться при такой напряжённости Е электрического поля, когда сила FэЕ, действующая со стороны электрического поля, будет равна по модулю, но противоположна по направлению силе Fл=еВυ, действующая со стороны магнитного поля:

еЕ=- еВυ или Е=- Вυ

Напряжённость Е электрического поля в движущемся проводнике длиной ℓ и разность потенциалов φ1 –φ2 связаны между собой соотношением:

Если такой проводник замкнуть, то по цепи пойдёт ток.

Таким образом, на концах проводника длиной ℓ, движущегося со скоростью υ в однородном магнитном поле В индуцирует ЭДС

Учитывая, что υ =dx/dt , где х перемещение проводника, преобразуем формулу

(16.2)

(Idx =dS — площадь контура, охватываемая проводником длиной ℓ при движении за промежуток времени dt). Тогда

(16.3)

(16.4)

ЭДС индукции в замкнутом контуре равна скорости изменения пронизывающего его магнитного потока, взятой с противоположным знаком (закон электромагнитной индукции, или закон Фарадея).

Если замкнутый контур содержит N последовательно соединённых витков (например катушка или соленоид), то ЭДС индукции равна сумме ЭДС каждого витка:

(16.5)

Согласно Максвеллу, поле покоящегося магнита является чисто магнитным:

В≠ 0, Е=0. поле движущегося магнита (или переменного тока) уже перестаёт быть таковым: у него и В≠ 0, Е≠ 0. это означает что, как только магнитное поле В начинает изменяться ( в результате движения магнита или изменения силы тока в цепи), сразу же возникает и электрическое поле Е. Это поле в отличие от электростатического не связано непосредственно с электрическими зарядами, и потому его силовые линии не могут на них ни начинаться, ни кончаться; они представляют собой замкнутые кривые, охватывающие линии магнитного поля (рис.16.3). Поля с замкнутыми силовыми линиями, как мы знаем, называются вихревыми.

Таким образом, переменное магнитное поле порождает вихревое электрическое поле.

Для поддержания электрического тока в цепи необходимо стороннее поле. Таким полем как раз и является вихревое электрическое. Роль сторонних сил выполняет сила Лоренца, под действием которой происходит разделение зарядов, в результате чего на концах проводника появляется разность потенциалов. Вихревое электрическое поле непотенциально и потому характеризуется ЭДС индукции. ЭДС индукции в проводнике является работой по перемещению единичного положительного заряда вдоль проводника.

Используя закон Ома для полной цепи и закон Фарадея, получаем выражение для индукционного тока:

(16.6)

Из этого уравнения следует, что индукционный ток зависит от сопротивления контура.

Можно ли заранее предсказать в каком направлении пойдёт индукционный ток.

Рассмотрим два случая:

Магнит приближается к катушке (dФ > 0) (рис.16.4, а). В процессе приближения магнита к катушке действует сила отталкивания, которая тормозит его падение. Это следует из закона сохранения энергии:

Когда в катушки появляется индукционный ток, то вместе с ним возникает и его собственное магнитное поле В. Это поле и отталкивает приближающийся магнит. Поскольку такое отталкивание возможно лишь в том случае, когда магнит и катушки обращены друг к другу одноимёнными полюсами, то сверху у катушки должен быть северный магнитный полюс (N). Зная это с помощью правой руки можем определить и направление индукционного тока в катушке. Индукционный ток в этом случае считаем отрицательным.

2. Магнит удаляется от катушки dФ 0, I > 0.

studfiles.net

Еще по теме:

  • Федеральный закон 147-фз от 17081995 Федеральный закон от 17 августа 1995 г. N 147-ФЗ "О естественных монополиях" (с изменениями и дополнениями) Федеральный закон от 17 августа 1995 года N 147-ФЗ"О естественных монополиях" С изменениями и дополнениями от: 8 августа, 30 декабря 2001 […]
  • Гладков адвокат получите квалифицированную юридическую помощь по уголовным правонарушениям а также по гражданским и арбитражным делам прекращение дела, отказ возбужения уголовного дела, оправдание, амнистия Нужно больше информации? 17 лет в должности […]
  • Закон санкт-петербурга 430-85 Закон Санкт-Петербурга от 8 октября 2007 г. N 430-85 "О зеленых насаждениях общего пользования" (Принят Законодательным Собранием Санкт-Петербурга 19 сентября 2007 года) Закон Санкт-Петербурга от 8 октября 2007 г. N 430-85"О зеленых насаждениях […]
  • Закон об учете дтп Постановление Правительства РФ от 29 июня 1995 г. N 647 "Об утверждении Правил учета дорожно-транспортных происшествий" (с изменениями и дополнениями) Постановление Правительства РФ от 29 июня 1995 г. N 647 "Об утверждении Правил учета […]
  • Закон о стандартизации 2013 Федеральный закон от 29 июня 2015 г. N 162-ФЗ "О стандартизации в Российской Федерации" (с изменениями и дополнениями) Федеральный закон от 29 июня 2015 г. N 162-ФЗ"О стандартизации в Российской Федерации" С изменениями и дополнениями от: 5 апреля, […]
  • 166 приказ мвд Приказ МВД России от 29 марта 2017 г. N 166 "О внесении изменений в приказ МВД России от 8 июля 2011 г. N 818 "О Порядке осуществления административного надзора за лицами, освобожденными из мест лишения свободы" Приказ МВД России от 29 марта 2017 […]