Оглавление:

Основные свойства логарифмов

  • Материалы к уроку
  • Скачать все формулы

Логарифмы, как и любые числа, можно складывать, вычитать и всячески преобразовывать. Но поскольку логарифмы — это не совсем обычные числа, здесь есть свои правила, которые называются основными свойствами.

Эти правила обязательно надо знать — без них не решается ни одна серьезная логарифмическая задача. К тому же, их совсем немного — все можно выучить за один день. Итак, приступим.

Сложение и вычитание логарифмов

Рассмотрим два логарифма с одинаковыми основаниями: log a x и log a y . Тогда их можно складывать и вычитать, причем:

Итак, сумма логарифмов равна логарифму произведения, а разность — логарифму частного. Обратите внимание: ключевой момент здесь — одинаковые основания. Если основания разные, эти правила не работают!

Эти формулы помогут вычислить логарифмическое выражение даже тогда, когда отдельные его части не считаются (см. урок «Что такое логарифм»). Взгляните на примеры — и убедитесь:

Задача. Найдите значение выражения: log6 4 + log6 9.

Поскольку основания у логарифмов одинаковые, используем формулу суммы:
log6 4 + log6 9 = log6 (4 · 9) = log6 36 = 2.

Задача. Найдите значение выражения: log2 48 − log2 3.

Основания одинаковые, используем формулу разности:
log2 48 − log2 3 = log2 (48 : 3) = log2 16 = 4.

Задача. Найдите значение выражения: log3 135 − log3 5.

Снова основания одинаковые, поэтому имеем:
log3 135 − log3 5 = log3 (135 : 5) = log3 27 = 3.

Как видите, исходные выражения составлены из «плохих» логарифмов, которые отдельно не считаются. Но после преобразований получаются вполне нормальные числа. На этом факте построены многие контрольные работы. Да что контрольные — подобные выражения на полном серьезе (иногда — практически без изменений) предлагаются на ЕГЭ.

Вынесение показателя степени из логарифма

Теперь немного усложним задачу. Что, если в основании или аргументе логарифма стоит степень? Тогда показатель этой степени можно вынести за знак логарифма по следующим правилам:

  1. log a x n = n · log a x ;

Несложно заметить, что последнее правило следует их первых двух. Но лучше его все-таки помнить — в некоторых случаях это значительно сократит объем вычислений.

Разумеется, все эти правила имеют смысл при соблюдении ОДЗ логарифма: a > 0, a ≠ 1, x > 0. И еще: учитесь применять все формулы не только слева направо, но и наоборот, т.е. можно вносить числа, стоящие перед знаком логарифма, в сам логарифм. Именно это чаще всего и требуется.

Задача. Найдите значение выражения: log7 49 6 .

Избавимся от степени в аргументе по первой формуле:
log7 49 6 = 6 · log7 49 = 6 · 2 = 12

Задача. Найдите значение выражения:

[Подпись к рисунку]

Заметим, что в знаменателе стоит логарифм, основание и аргумент которого являются точными степенями: 16 = 2 4 ; 49 = 7 2 . Имеем:

[Подпись к рисунку]

Думаю, к последнему примеру требуются пояснения. Куда исчезли логарифмы? До самого последнего момента мы работаем только со знаменателем. Представили основание и аргумент стоящего там логарифма в виде степеней и вынесли показатели — получили «трехэтажную» дробь.

Теперь посмотрим на основную дробь. В числителе и знаменателе стоит одно и то же число: log2 7. Поскольку log2 7 ≠ 0, можем сократить дробь — в знаменателе останется 2/4. По правилам арифметики, четверку можно перенести в числитель, что и было сделано. В результате получился ответ: 2.

Переход к новому основанию

Говоря о правилах сложения и вычитания логарифмов, я специально подчеркивал, что они работают только при одинаковых основаниях. А что, если основания разные? Что, если они не являются точными степенями одного и того же числа?

На помощь приходят формулы перехода к новому основанию. Сформулируем их в виде теоремы:

Пусть дан логарифм log a x . Тогда для любого числа c такого, что c > 0 и c ≠ 1, верно равенство:

[Подпись к рисунку]

В частности, если положить c = x , получим:

[Подпись к рисунку]

Из второй формулы следует, что можно менять местами основание и аргумент логарифма, но при этом все выражение «переворачивается», т.е. логарифм оказывается в знаменателе.

Эти формулы редко встречается в обычных числовых выражениях. Оценить, насколько они удобны, можно только при решении логарифмических уравнений и неравенств.

Впрочем, существуют задачи, которые вообще не решаются иначе как переходом к новому основанию. Рассмотрим парочку таких:

Задача. Найдите значение выражения: log5 16 · log2 25.

Заметим, что в аргументах обоих логарифмов стоят точные степени. Вынесем показатели: log5 16 = log5 2 4 = 4log5 2; log2 25 = log2 5 2 = 2log2 5;

А теперь «перевернем» второй логарифм:

[Подпись к рисунку]

Поскольку от перестановки множителей произведение не меняется, мы спокойно перемножили четверку и двойку, а затем разобрались с логарифмами.

Задача. Найдите значение выражения: log9 100 · lg 3.

Основание и аргумент первого логарифма — точные степени. Запишем это и избавимся от показателей:

[Подпись к рисунку]

Теперь избавимся от десятичного логарифма, перейдя к новому основанию:

[Подпись к рисунку]

Основное логарифмическое тождество

Часто в процессе решения требуется представить число как логарифм по заданному основанию. В этом случае нам помогут формулы:

  1. n = log a a n

В первом случае число n становится показателем степени, стоящей в аргументе. Число n может быть абсолютно любым, ведь это просто значение логарифма.

Вторая формула — это фактически перефразированное определение. Она так и называется: основное логарифмическое тождество .

В самом деле, что будет, если число b возвести в такую степень, что число b в этой степени дает число a ? Правильно: получится это самое число a . Внимательно прочитайте этот абзац еще раз — многие на нем «зависают».

Подобно формулам перехода к новому основанию, основное логарифмическое тождество иногда бывает единственно возможным решением.

Задача. Найдите значение выражения:

[Подпись к рисунку]

Заметим, что log25 64 = log5 8 — просто вынесли квадрат из основания и аргумента логарифма. Учитывая правила умножения степеней с одинаковым основанием, получаем:

[Подпись к рисунку]

Если кто-то не в курсе, это была настоящая задача из ЕГЭ 🙂

Логарифмическая единица и логарифмический ноль

В заключение приведу два тождества, которые сложно назвать свойствами — скорее, это следствия из определения логарифма. Они постоянно встречаются в задачах и, что удивительно, создают проблемы даже для «продвинутых» учеников.

  1. log a a = 1 — это логарифмическая единица . Запомните раз и навсегда: логарифм по любому основанию a от самого этого основания равен единице.
  2. log a 1 = 0 — это логарифмический ноль . Основание a может быть каким угодно, но если в аргументе стоит единица — логарифм равен нулю! Потому что a 0 = 1 — это прямое следствие из определения.

Вот и все свойства. Обязательно потренируйтесь применять их на практике! Скачайте шпаргалку в начале урока, распечатайте ее — и решайте задачи.

www.berdov.com

Производная натурального логарифма и логарифма по основанию a

Вывод формул производных натурального логарифма и логарифма по основанию a

Производная натурального логарифма от x равна единице, деленной на x:
(1) ( ln x )′ = .

Производная логарифма по основанию a равна единице, деленной на переменную x, умноженную на натуральный логарифм от a :
(2) ( log a x )′ = .

Далее мы приводим вывод этих формул.

Доказательство

Пусть есть некоторое положительное число, не равное единице. Рассмотрим функцию, зависящую от переменной x , которая является логарифмом по основанию :
.
Эта функция определена при . Найдем ее производную по переменной x . По определению, производная является следующим пределом:
(3) .

Преобразуем это выражение, чтобы свести его к известным математическим свойствам и правилам. Для этого нам нужно знать следующие факты:
А) Свойства логарифма. Нам понадобятся следующие формулы:
(4) ;
(5) ;
(6) ;
Б) Непрерывность логарифма и свойство пределов для непрерывной функции:
(7) .
Здесь – некоторая функция, у которой существует предел и этот предел положителен.
В) Значение второго замечательного предела:
(8) .

Применяем эти факты к нашему пределу. Сначала преобразуем алгебраическое выражение
.
Для этого применим свойства (4) и (5).

Далее сделаем подстановку . При , . Тогда

Воспользуемся свойством (7) и вторым замечательным пределом (8):
.

И, наконец, применим свойство (6):
.
Логарифм по основанию e называется натуральным логарифмом. Он обозначается так:
.
Тогда ;
.

Тем самым мы получили формулу (2) производной логарифма.

Производная натурального логарифма

Еще раз выпишем формулу производной логарифма по основанию a :
.
Эта формула имеет наиболее простой вид для натурального логарифма, для которого , . Тогда
(1) .

Из-за такой простоты, натуральный логарифм очень широко используется в математическом анализе и в других разделах математики, связанных с дифференциальным исчислением. Логарифмические функции с другими основаниями можно выразить через натуральный логарифм, используя свойство (6):
.

Производную логарифма по основанию можно найти из формулы (1), если вынести постоянную за знак дифференцирования:
.

Другие способы доказательство производной логарифма

Здесь мы предполагаем, что нам известна формула производной экспоненты:
(9) .
Тогда мы можем вывести формулу производной натурального логарифма, учитывая, что логарифм является обратной функцией к экспоненте.

Докажем формулу производной натурального логарифма, применив формулу производной обратной функции:
.
В нашем случае . Обратной функцией к натуральному логарифму является экспонента:
.
Ее производная определяется по формуле (9). Переменные можно обозначить любой буквой. В формуле (9), заменим переменную x на y:
.
Поскольку , то
.
Тогда
.
Формула доказана.

Теперь докажем формулу производной натурального логарифма с помощью правила дифференцирования сложной функции. Поскольку функции и являются обратными друг к другу, то
.
Дифференцируем это уравнение по переменной x :
(10) .
Производная от икса равна единице:
.
Применяем правило дифференцирования сложной функции:
.
Здесь . Подставим в (10):
.
Отсюда
.

Найти производные от ln 2x, ln 3x и ln nx.

Исходные функции имеют похожий вид. Поэтому мы найдем производную от функции y = ln nx . Затем подставим n = 2 и n = 3 . И, тем самым, получим формулы для производных от ln 2x и ln 3x .

Итак, ищем производную от функции
y = ln nx .
Представим эту функцию как сложную функцию, состоящую из двух функций:
1) Функции , зависящей от переменной : ;
2) Функции , зависящей от переменной : .
Тогда исходная функция составлена из функций и :
.

Найдем производную от функции по переменной x:
.
Найдем производную от функции по переменной :
.
Применяем формулу производной сложной функции.
.
Здесь мы подставили .

Итак, мы нашли:
(11) .
Мы видим, что производная не зависит от n . Этот результат вполне естественен, если преобразовать исходную функцию, применяя формулу логарифма от произведения:
.
– это постоянная. Ее производная равна нулю. Тогда по правилу дифференцирования суммы имеем:
.

Производная логарифма модуля x

Найдем производную от еще одной очень важной функции – натурального логарифма от модуля x :
(12) .

Рассмотрим случай . Тогда и функция имеет вид:
.
Ее производная определяется по формуле (1):
.

Теперь рассмотрим случай . Тогда и функция имеет вид:
,
где .
Но производную этой функции мы также нашли в приведенном выше примере. Она не зависит от n и равна
.
Тогда
.

Объединяем эти два случая в одну формулу:
.

Соответственно, для логарифма по основанию a , имеем:
.

Производные высших порядков натурального логарифма

Рассмотрим функцию
.
Мы нашли ее производную первого порядка:
(13) .

Найдем производную второго порядка:
.
Найдем производную третьего порядка:
.
Найдем производную четвертого порядка:
.

Можно заметить, что производная n-го порядка имеет вид:
(14) .
Докажем это методом математической индукции.

Доказательство

Подставим в формулу (14) значение n = 1:
.
Поскольку , то при n = 1 , формула (14) справедлива.

Предположим, что формула (14) выполняется при n = k . Докажем, что из этого следует, что формула справедлива при n = k + 1 .

Действительно, при n = k имеем:
.
Дифференцируем по переменной x :

.
Итак, мы получили:
.
Эта формула совпадает с формулой (14) при n = k + 1 . Таким образом, из предположения, что формула (14) справедлива при n = k следует, что формула (14) справедлива при n = k + 1 .

Поэтому формула (14), для производной n-го порядка, справедлива для любых n .

Производные высших порядков логарифма по основанию a

Чтобы найти производную n-го порядка от логарифма по основанию a , нужно выразить его через натуральный логарифм:
.
Применяя формулу (14), находим n-ю производную:
.

Автор: Олег Одинцов . Опубликовано: 19-03-2017

1cov-edu.ru

Логарифм — свойства, формулы, график

Определение логарифма

В дальнейшем будем считать, что основание логарифма a положительное, не равное единице число: 0,\; a\ne 1″ class=»sprite» style=»width:105px;height:19px;vertical-align:-5px;background-position: -384px -528px;»> .

График логарифма

График логарифма получается из графика показательной функции зеркальным отражением относительно прямой y = x . На графике представлены значения логарифма y ( x ) = loga x для четырех значений основания логарифма: a = 2 , a = 8 , a = 1/2 и a = 1/8 . На графике видно, что при a > 1 логарифм монотонно возрастает. С увеличением x рост существенно замедляется. При 0

Если 0,\;a\ne 1)» class=»sprite» style=»width:184px;height:20px;vertical-align:-6px;background-position: -426px -488px;»> , то

Производная логарифма

Производная логарифма от модуля x :
.
Производная n-го порядка:
.
Вывод формул > > >

Для нахождения производной логарифма, его нужно привести к основанию e.
;
.

Интеграл от логарифма вычисляется интегрированием по частям: .
Итак,

Выражения через комплексные числа

Рассмотрим функцию комплексного числа z:
.
Выразим комплексное число z через модуль r и аргумент φ:
.
Тогда, используя свойства логарифма, имеем:
.
Или

Однако, аргумент φ определен не однозначно. Если положить
, где n — целое,
то будет одним и тем же числом при различных n.

Поэтому логарифм, как функция от комплексного переменного, является не однозначной функцией.

Разложение в степенной ряд

При имеет место разложение:

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Автор: Олег Одинцов . Опубликовано: 26-03-2014 Изменено: 20-03-2017

1cov-edu.ru

Свойства логарифмов, формулировки и доказательства.

Логарифмы обладают рядом характерных свойств. В этой статье мы разберем основные свойства логарифмов. Здесь мы дадим их формулировки, запишем свойства логарифмов в виде формул, покажем примеры их применения, а также приведем доказательства свойств логарифмов.

Навигация по странице.

Основные свойства логарифмов, формулы

Для удобства запоминания и использования представим основные свойства логарифмов в виде списка формул. В следующем пункте дадим их формулировки, доказательства, примеры использования и необходимые пояснения.

  1. Свойство логарифма единицы: loga1=0 для любого a>0 , a≠1 .
  2. Логарифм числа, равного основанию: logaa=1 при a>0 , a≠1 .
  3. Свойство логарифма степени основания: logaa p =p , где a>0 , a≠1 и p – любое действительное число.
  4. Логарифм произведения двух положительных чисел: loga(x·y)=logax+logay , a>0 , a≠1 , x>0 , y>0 ,
    и свойство логарифма произведения n положительных чисел: loga(x1·x2·…·xn)= logax1+logax2+…+logaxn , a>0 , a≠1 , x1>0, x2>0, …, xn>0 .
  5. Свойство логарифма частного: , где a>0 , a≠1 , x>0 , y>0 .
  6. Логарифм степени числа: logab p =p·loga|b| , где a>0 , a≠1 , b и p такие числа, что степень b p имеет смысл и b p >0 .

  • Следствие: , где a>0 , a≠1 , n – натуральное число, большее единицы, b>0 .
  • Следствие 1: , a>0 , a≠1 , b>0 , b≠1 .
  • Следствие 2: , a>0 , a≠1 , b>0 , p и q – действительные числа, q≠0 , в частности при b=a имеем .

Формулировки и доказательства свойств

Переходим к формулированию и доказательству записанных свойств логарифмов. Все свойства логарифмов доказываются на основе определения логарифма и вытекающего из него основного логарифмического тождества, а также свойств степени.

Начнем со свойства логарифма единицы. Его формулировка такова: логарифм единицы равен нулю, то есть, loga1=0 для любого a>0 , a≠1 . Доказательство не вызывает сложностей: так как a 0 =1 для любого a , удовлетворяющего указанным выше условиям a>0 и a≠1 , то доказываемое равенство loga1=0 сразу следует из определения логарифма.

Приведем примеры применения рассмотренного свойства: log31=0 , lg1=0 и .

Переходим к следующему свойству: логарифм числа, равного основанию, равен единице, то есть, logaa=1 при a>0 , a≠1 . Действительно, так как a 1 =a для любого a , то по определению логарифма logaa=1 .

Примерами использования этого свойства логарифмов являются равенства log55=1 , log5,65,6 и lne=1 .

Логарифм степени числа, равного основанию логарифма, равен показателю степени. Этому свойству логарифма отвечает формула вида logaa p =p , где a>0 , a≠1 и p – любое действительное число. Это свойство напрямую следует из определения логарифма. Заметим, что оно позволяет сразу указать значение логарифма, если есть возможность представить число под знаком логарифма в виде степени основания, подробнее об этом мы поговорим в статье вычисление логарифмов.

К примеру, log22 7 =7 , lg10 -4 =-4 и .

Логарифм произведения двух положительных чисел x и y равен произведению логарифмов этих чисел: loga(x·y)=logax+logay , a>0 , a≠1 . Докажем свойство логарифма произведения. В силу свойств степени a logax+logay =a logax ·a logay , а так как по основному логарифмическому тождеству a logax =x и a logay =y , то a logax ·a logay =x·y . Таким образом, a logax+logay =x·y , откуда по определению логарифма вытекает доказываемое равенство.

Покажем примеры использования свойства логарифма произведения: log5(2·3)=log52+log53 и .

Свойство логарифма произведения можно обобщить на произведение конечного числа n положительных чисел x1, x2, …, xn как loga(x1·x2·…·xn)= logax1+logax2+…+logaxn . Данное равенство без проблем доказывается методом математической индукции.

Например, натуральных логарифм произведения можно заменить суммой трех натуральных логарифмов чисел 4 , e , и .

Логарифм частного двух положительных чисел x и y равен разности логарифмов этих чисел. Свойству логарифма частного соответствует формула вида , где a>0 , a≠1 , x и y – некоторые положительные числа. Справедливость этой формулы доказывается как и формула логарифма произведения: так как , то по определению логарифма .

Приведем пример использования этого свойства логарифма: .

Переходим к свойству логарифма степени. Логарифм степени равен произведению показателя степени на логарифм модуля основания этой степени. Запишем это свойство логарифма степени в виде формулы: logab p =p·loga|b| , где a>0 , a≠1 , b и p такие числа, что степень b p имеет смысл и b p >0 .

Сначала докажем это свойство для положительных b . Основное логарифмическое тождество позволяет нам представить число b как a logab , тогда b p =(a logab ) p , а полученное выражение в силу свойство степени равно a p·logab . Так мы приходим к равенству b p =a p·logab , из которого по определению логарифма заключаем, что logab p =p·logab .

Осталось доказать это свойство для отрицательных b . Здесь замечаем, что выражение logab p при отрицательных b имеет смысл лишь при четных показателях степени p (так как значение степени b p должно быть больше нуля, в противном случае логарифм не будет иметь смысла), а в этом случае b p =|b| p . Тогда b p =|b| p =(a loga|b| ) p =a p·loga|b| , откуда logab p =p·loga|b| .

Например, и ln(-3) 4 =4·ln|-3|=4·ln3 .

Из предыдущего свойства вытекает свойство логарифма из корня: логарифм корня n -ой степени равен произведению дроби 1/n на логарифм подкоренного выражения, то есть, , где a>0 , a≠1 , n – натуральное число, большее единицы, b>0 .

Доказательство базируется на равенстве (смотрите определение степени с дробным показателем), которое справедливо для любых положительных b , и свойстве логарифма степени: .

Вот пример использования этого свойства: .

Теперь докажем формулу перехода к новому основанию логарифма вида . Для этого достаточно доказать справедливость равенства logcb=logab·logca . Основное логарифмическое тождество позволяет нам число b представить как a logab , тогда logcb=logca logab . Осталось воспользоваться свойством логарифма степени: logca logab =logab·logca . Так доказано равенство logcb=logab·logca , а значит, доказана и формула перехода к новому основанию логарифма .

Покажем пару примеров применения этого свойства логарифмов: и .

Формула перехода к новому основанию позволяет переходить к работе с логарифмами, имеющими «удобное» основание. Например, с ее помощью можно перейти к натуральным или десятичным логарифмам, чтобы можно было вычислить значение логарифма по таблице логарифмов. Формула перехода к новому основанию логарифма также позволяет в некоторых случаях находить значение данного логарифма, когда известны значения некоторых логарифмов с другими основаниями.

Часто используется частный случай формулы перехода к новому основанию логарифма при c=b вида . Отсюда видно, что logab и logba – взаимно обратные числа. К примеру, .

Также часто используется формула , которая удобна при нахождении значений логарифмов. Для подтверждения своих слов покажем, как с ее помощью вычисляется значение логарифма вида . Имеем . Для доказательства формулы достаточно воспользоваться формулой перехода к новому основанию логарифма a : .

Осталось доказать свойства сравнения логарифмов.

Воспользуемся методом от противного. Предположим, что при a1>1 , a2>1 и a12 и при 0 1 справедливо loga1b≤loga2b . По свойствам логарифмов эти неравенства можно переписать как и соответственно, а из них следует, что logba1≤logba2 и logba1≥logba2 соответственно. Тогда по свойствам степеней с одинаковыми основаниями должны выполняться равенства b logba1 ≥b logba2 и b logba1 ≥b logba2 , то есть, a1≥a2 . Так мы пришли к противоречию условию a12 . На этом доказательство завершено.

www.cleverstudents.ru

Логарифм . Основное логарифмическое тождество .

Свойства логарифмов. Десятичный логарифм . Натуральный логарифм.

Логарифмом положительного числа N по основанию ( b > 0, b 1 ) называется показатель степени x , в которую нужно возвести b , чтобы получить N .

Эта запись равнозначна следующей: b x = N .

П р и м е р ы : log3 81 = 4 , так как 3 4 = 81 ;

log1/3 27 = 3 , так как ( 1/3 ) — 3 = 3 3 = 27 .

Вышеприведенное определение логарифма можно записать в виде тождества:

Основные свойства логарифмов.

2) log 1 = 0 , так как b 0 = 1 .

3) Логарифм произведения равен сумме логарифмов сомножителей:

4) Логарифм частного равен разности логарифмов делимого и делителя:

5) Логарифм степени равен произведению показателя степени на логарифм её основания:

Следствием этого свойства является следующее: логарифм корня равен логарифму подкоренного числа, делённому на степень корня:

6) Если в основании логарифма находится степень, то величину, обратную показателю степени, можно вынести за знак лога рифма:

Два последних свойства можно объединить в одно:

7) Формула модуля перехода ( т. e . перехода от одного основания логарифма к другому основанию ):

В частном случае при N = a имеем:

Десятичным логарифмом называется логарифм по основанию 10. Он обозначается lg , т.е. log 10 N = lg N . Логарифмы чисел 10, 100, 1000, . p авны соответственно 1, 2, 3, …, т.е. имеют столько положительных

единиц, сколько нулей стоит в логарифмируемом числе после единицы. Логарифмы чисел 0.1, 0.01, 0.001, . p авны соответственно –1, –2, –3, …, т.е. имеют столько отрицательных единиц, сколько нулей стоит в логарифмируемом числе перед единицей ( считая и нуль целых ). Логарифмы остальных чисел имеют дробную часть, называемую мантиссой. Целая часть логарифма называется характеристикой. Для практического при менения десятичные логарифмы наиболее удобны.

Натуральным логарифмом называется логарифм по основанию е . Он обозначается ln , т.е. log e N = ln N . Число е является иррациональным, его приближённое значение 2.718281828. Оно является пределом, к которому стремится число ( 1 + 1 / n ) n при неограниченном возрастании n ( см. первый замечательный предел на странице «Пределы числовых последовательностей»).
Как это ни покажется странным, натуральные логарифмы оказались очень удобными при проведении различного рода операций, связанных с анализом функций. Вычисление логарифмов по основанию е осуществляется гораздо быстрее, чем по любому другому основанию.

www.bymath.net

Еще по теме:

  • Приказ о внесении изменений содержащие персональные данные работника Особенности приказа о внесении изменений персональных и паспортных данных работника и образец документа Персональные данные (ПД) – информация, имеющая отношение к определенному лицу, которая предоставляется организации или другому лицу с […]
  • Иродов ие основные законы механики Механика. Основные законы . Иродов И.Е. 10 -е изд. — М.: 2010. — 309 с. В книге рассмотрены основные законы как нерелятивистской (ньютоновской), так и релятивистской механики — законы движения и законы сохранения импульса, энергии и момента […]
  • Повышение пенсии в краснодаре Пенсионное обеспечение для жителей Краснодара и Краснодарского края в 2018 году Нетрудоспособные лица, признанные таковыми законом, получают материальное обеспечение со стороны государства. Претендовать на бюджетные средства могут только граждане, […]
  • Оплата госпошлины в судах рк Госпошлина в суд. Калькулятор госпошлины 2018 Нужна госпошлина в суд? Калькулятор госпошлины 2018 года: Ваш браузер не поддерживает плавающие фреймы! Размер государственной пошлины: 1. Подача искового заявления Имущественного характера, не […]
  • Декретные пособия в 2012 Расчет декретных выплат в 2012 году Как известно, согласно с изменениями, внесенными в Федеральный закон "Об обязательном социальном страховании на случай временной нетрудоспособности и в связи с материнством" 9 февраля 2011г., принят новый порядок […]
  • Калькулятор пенсии полицейских в 2018 году Пенсия МВД. Стаж для начисления пенсии. Размер пенсии ​Здорово!​ 500 рублей.​ сохраняет свой смысл.​ с паспортом, а​ОВДЗ​ каждом случае.​Как можно заметить, в​9​ РФ выразится числом​свидетельство пенсионного страхования;​ сотрудникам полиции.​ № […]