Электромагнитная индукция. Правило Ленца

Презентация к уроку

Загрузить презентацию (485,9 кБ)

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель: изучить явление электромагнитной индукции (эми).

Образовательные:

  • изучить явление эми;
  • познакомить учащихся с правилом Ленца.
  • познакомить учащихся с применением явления эми.

Воспитательные:

  • на примере биографических фактов из жизни М.Фарадея, показать целеустремленность и трудолюбие ученого;

Развивающие:

  • развитие логического мышления для объяснения результатов опытов;
  • развитие интеллектуальных умений учащихся (наблюдать, применять ранее усвоенные знания в новой ситуации, анализировать, делать выводы);

Оборудование:

  • портрет Фарадея.
  • приборы для демонстрации электромагнитной индукции (два гальванометра, источники тока: ВС-24, РНШ;
  • разборный трансформатор и принадлежности к нему,
  • полосовые магниты- 2 шт., ключ, реостат на 15 Ом,
  • замкнутое алюминиевое кольцо, кольцо с разрезом),
  • ЭОР «Физика 7-11 классы. Библиотека наглядных пособий»- 1С.

Образование — раздел Электродинамика.

План урока:

  1. Организационный момент.
  2. Повторение.
  3. Мотивационный этап.
  4. Изучение нового материала.
  5. Закрепление.
  6. Итог урока.

1. Организационный момент. ,

Здравствуйте, ребята. Сегодня мы с вами на уроке познакомимся с ЭМИ или ласково назовем ее Эмичка. Что расшифровывается как электромагнитная индукция.

— что называется магнитным потоком?

— каковы способы изменения магнитного потока?

— замкнутый контур нормально расположен в магнитном поле.

Что будет происходить с магнитным потоком, при повороте контура на 180°?

— что такое электрический ток?

— каковы условия его существования?

3. Мотивационный этап:

Учитель задает вопрос классу: Возможно ли наличие тока в проводнике без источника тока?

(учащиеся дают свои предположения)

Опыт: соединить два демонстрационных гальванометра.

Вращая ручку одного, наблюдаем за отклонением стрелки на втором гальванометре. (рис 1.)

Проблема: откуда появился ток в гальванометре?

4. Изучение нового материала:

Опыт: внесение (вынесение) полосового магнита из замкнутого контура, соединенного с гальванометром. (рис.2)

Проблема: Откуда появился ток в замкнутом контуре?

При затруднении учащимся можно задать несколько подсказывающих вопросов:

— что из себя представляет контур? (ответ: контур замкнутый)

— что существует вокруг полосового магнита? (ответ: вокруг магнита существует магнитное поле)?

— что появляется, когда в контур вносят (выносят) магнит? (ответ: замкнутый контур пронизывает магнитный поток)

— что происходит с магнитным потоком при внесении (вынесении) магнита в замкнутый контур? (ответ: магнитный поток изменяется)

Вывод: Причина возникновения электрического тока в замкнутом контуре — изменение магнитного потока, пронизывающего замкнутый контур.

Это явление впервые было обнаружено Майклом Фарадеем в 1820 году. Оно было названо явлением электромагнитной индукцией.

Учитель: сейчас послушаем сообщение о М. Фарадее (сообщение учащихся)

Учитель: Электромагнитная индукция — физическое явление, заключающееся в возникновении вихревого электрического поля, вызывающего электрический ток в замкнутом контуре при изменении потока магнитной индукции через поверхность, ограниченную этим контуром.

(учащиеся записывают в тетрадь)

Учитель: Ток, возникающий в замкнутом контуре, называется индукционным.

(учащиеся записывают в тетрадь)

Учитель: Рассмотрим все случаи возникновения индукционного тока в замкнутом контуре. Для этого показываю серию опытов, учащиеся должны попытаться объяснить и указать причину возникновения индукционного тока.

Опыт 1: внесение (вынесение) полосового магнита из замкнутого контура, соединенного с гальванометром.

Причина возникновения тока: изменение числа линий магнитной индукции.

Опыт 2: поворот рамки одного гальванометра, соединенного с другим гальванометром.

Причина возникновения тока: поворот рамки в магнитном поле.

Собираем электрическую цепь, состоящую из источника тока (ВС-24М, реостата на 15 Ом, ключа, разборного трансформатора, гальванометра — см. рис. 3)

Опыт 3: замыкание (размыкание) ключа (рис. 3)

Причина возникновения тока: изменение силы тока в одной цепи приводит к изменению магнитной индукции.

Опыт 4 перемещение движка реостата. (рис.3)

Причина возникновения тока: изменение сопротивления в первой цепи приводит к изменению силы тока, а соответственно и изменению магнитной индукции рис. 3.

Учитель: Отчего зависит величина и направление индукционного тока?

Опыт: внесение (вынесение) магнита сначала северным полюсом, затем южным полюсом. (рис. 4)

Вывод: направление тока зависит от направления магнитного поля и направления движения магнита.

Опыт: внесение (вынесение) магнита в замкнутый контур сначала с одним магнитом, затем с двумя магнитами. (рис. 5)

Вывод: величина тока зависит от величины магнитной индукции. рис. 5

Опыт: вносим магнит сначала медленно, затем быстро.

Вывод: величина тока зависит от скорости внесения магнита.

Учитель: Для определения направления индукционного тока в замкнутом контуре используется правило Ленца: Индукционный ток имеет такое направление, что созданный им магнитный поток через поверхность, ограниченную контуром, препятствует изменению магнитного потока, вызвавшего этот ток. (учащиеся записывают в тетрадь)

Опыт: демонстрация правила Ленца (c замкнутым и с разрезом кольцом)

(пояснения рисунками на доске)

Учитель: Применим данное правило для следующих случаев: (рис. 6)

(два случая учитель разбирает сам, записывая план решения на доске, два остальных случая учащиеся выполняют самостоятельно в тетрадях, двух учеников можно вызвать к доске, а можно предложить взаимоконтроль).

6. Домашнее задание. (на карточках)

В стальной сердечник трансформатора, подключенного к напряжению 220В (РНШ) вносят замкнутый контур с лампочкой. Почему загорается лампочка при этом? Поясните рисунком. рис. 7.

Учитель: Явление электромагнитной индукции нашло широкое применение в технике: трансформаторы, поезда на магнитной подушке, металлоискатели (детекторы металлов), запись и информации на магнитные носители и чтение с них.

Показ видеороликов о применении явления электромагнитной индукции: детектор металлов, запись информации на магнитные носители и чтение с них — диск «Физика 7-11 классы. Библиотека наглядных пособий» Образовательные комплексы.

1) В чем заключается явление ЭМИ?

2) Вспомним опыты, позволяющие наблюдать это явление.

3) Кто открыл явление ЭМИ?

4) Что мы определяли с помощью правила Ленца?

xn--i1abbnckbmcl9fb.xn--p1ai

Явление электромагнитной индукции. Правило Ленца.

Электромагнитной индукцией называют явление возникновения электрического тока в проводящем контуре, который либо покоится в переменном магнитном поле, либо движется в постоянном магнитном поле, таким образом, что число линий магнитной индукции, пронизывающих контур меняется.

Причина возникновения электрического тока в первом случае — вихревое электрическое поле, во втором случае — сила Лоренца.

1. перемещение магнита и катушки относительно друг друга;

2. перемещение одной катушки относительно другой;

3. изменение силы тока в одной из катушек;

4. замыкание и размыкание цепи;

5. перемещение сердечника;

Возникающий в замкнутом контуре индукционный ток своим магнитным потоком противодействует тому изменению магнитного потока, которое он вызвал.

Применение правила Ленца

1. показать направление вектора В внешнего магнитного поля;

2. определить увеличивается или уменьшается магнитный поток через контур;

3. показать направление вектора Вi магнитного поля индукционного тока ( при уменьшении магнитного потока вектора В внешнего м.поля и Вi магнитного поля индукционного тока должны быть направлены одинаково, а при увеличениии магнитного потока В и Вi должны быть направлены противоположно );

4. по правилу буравчика определить направление индукционного тока в контуре.

Закон электромагнитной индукции.

ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром.

ЭДС электромагнитной индукции в замкнутом контуре равна по модулю и противоположна по направлению скорости изменения магнитного потока через поверхность, ограниченную этим контуром

– скорость изменения магнитного потока, через поверхность ограниченную контуром.

i — ЭДС индукции

∆Ф — изменение магнитного потока

∆t — время изменени

Cмысл знака «минус» в законе .

Принято связывать направление нормали и положительное направление обхода контура = положительное направление тока = положительное направление ЭДС по правилу правого винта.

Самоиндукцией называют явление возникновения ЭДС индукции в том же самом проводнике, но которому идет переменный ток.

Это приводит к тому, что при замыкании цепи, содержащий источник постоянной ЭДС, определенное значение силы тока устанавливается не сразу, а постепенно. При отключении источника ток в замкнутых контурах прекращается не мгновенно.

studopedia.ru

Урок «Электромагнитная индукция. Правило Ленца»

Успейте воспользоваться скидками до 50% на курсы «Инфоурок»

Урок по физике в 11 классе на тему:

«Электромагнитная индукция. Правило Ленца»

образовательные: познакомить учащихся с явлением электромагнитной индукции, воспроизвести опыты Фарадея, показать, что индукционный ток появляется при изменении магнитного потока, пронизывающего контур; вывести формулу и уяснить физический смысл закона электромагнитной индукции; сформулировать правило Ленца.

воспитательные: формировать навыки коллективной работы в сочетании с самостоятельностью учащихся, воспитывать познавательную потребность и интерес к предмету;

развивающие: развивать способность быстро воспринимать информацию и выполнять практические задания; развивать логическое мышление и внимание, умение анализировать, сопоставлять полученные результаты, делать соответствующие выводы.

История открытия явления электромагнитной индукции.

Демонстрация опытов Фарадея по электромагнитной индукции.

Причины возникновения индукционного тока.

Направление индукционного тока. Правило Ленца

Закон электромагнитной индукции.

Электромагнитная индукция в современной технике

Закрепление темы: Лабораторная работа «Электромагнитная индукция»

Подведение итогов урока I . Постановка учебной задачи.

Мы с вами прошли тему «Магнитное поле». Сегодня нам предстоит выяснить, как вы усвоили этот материал. Обобщим знания о магнитном поле и продолжим совершенствовать умения объяснять магнитные явления.

II . Реализация опорных знаний.

Для этого мы должны с вами ответить на некоторые вопросы.

Что такое электрический ток?

Что необходимо для существования электрического тока?

Чем создается магнитное поле?

Как можно обнаружить магнитное поле?

Какая величина характеризует магнитное поле в каждой точке?

В каких единицах измеряют магнитную индукцию?

Какая величина характеризует магнитное поле в определенной области пространства?

В каких единицах измеряют магнитный поток?

Чему равен 1 Вб?

От чего зависит магнитный поток, пронизывающий площадь плоского контура, помещенного в однородное магнитное поле?

Дополните следующие определения:

А) Сила Лоренца-это..

Б) Сила Ампера –это..

В) Температура Кюри-это..

Г) Магнитная проницаемость среды характеризует..

13. Напишите формулы для расчетов:

В) Модуля вектора магнитной индукции

Г) Магнитного потока

Д) магнитной проницаемости среды

14. Сила Ампера применяется..

15. Сила Лоренца используется..

III . Изучение нового материала

Итак, после обобщения знаний о магнитном поле и продолжим совершенствовать умения объяснять магнитные явления.

Сегодня на уроке мы откроем новое явление, которое принадлежит к числу самых замечательных научных достижений первой половины 19 века, которое вызвало появление и бурное развитие электротехники и радиотехники. Итак, вперёд за знаниями!

Тема урока «Электромагнитная индукция. Правило Ленца»

Последовательность изложения нового материала

История открытия явления электромагнитной индукции.

Демонстрация опытов Фарадея по электромагнитной индукции.

Причины возникновения индукционного тока.

Направление индукционного тока. Правило Ленца

Закон электромагнитной индукции.

Лабораторная работа «Электромагнитная индукция»

Ранее в электродинамике изучались явления, связанные или обусловленные существованием постоянных во времени (статических и стационарных) электрических и магнитных полей. Появляются ли новые явления при наличии переменных полей?

История открытия явления электромагнитной индукции.

На экране портрет М. Фарадея (1791 — 1867).

Библиографические сведения: М. Фарадей

Демонстрация опытов Фарадея по электромагнитной индукции, анализ опытов

Опыт 1. Внесение (вынесение) полосового магнита из замкнутого контура, соединенного с гальванометром.

Опыт 2. При замыкании (размыкании ключа), перемещении движка реостата, происходит изменение магнитного поля, пронизывающего катушку, в ней возникает ток.

Ток, который возникает в катушке, когда относительно нее движется постоянный магнит, назвали индукционным. Этот ток в катушке индуцируется, т. е. наводится движущимся магнитом. .Магнитное поле, которое не меняется индукционного тока не создает.

Опыт 3. Поворот рамки в магнитном поле.

Индукционный ток в контуре возникает тогда и только тогда, когда проводник пересекает силовые линии магнитного поля.

Мы рассмотрели способы получения индукционного тока:

движение магнита относительно катушки;

движение катушки относительно магнита;

замыкание и размыкание цепи;

вращение рамки внутри магнита;

перемещение бегунка реостата;

движение одной катушки относительно другой.

Причины возникновения индукционного тока:

только при изменении магнитного потока, пронизывающего охваченную проводником площадь (при движении магнита и катушки относительно друг друга);

за счёт изменения силы тока в цепи (при замыкании и размыкании цепи);

за счёт изменения ориентации контура по отношению к линиям магнитной индукции.

Вывод: Только переменное магнитное поле может создать ток (индукционный ток). Отклонение стрелки гальванометра указывает на наличие индукционного тока в цепи катушки. Как только движение прекращается, прекращается и ток.

Что же мы сегодня изучили? Явление. Какое? Явление возникновения индукционного тока в замкнутом контуре. Это и есть явление электромагнитной индукции. Условие его возникновения – изменение числа линий магнитной индукции через поверхность, ограниченную контуром.

Во всех случаях можно отметить, что электрический ток возникает при изменении магнитного поля , т.е при изменении числа силовых линий, пронизывающих катушку. Переходя на язык физических величин, общей причиной возникновения тока можно назвать изменение магнитного потока, пронизывающего контур. Дальнейшие количественные исследования подтвердили, что явление электромагнитной индукции – это возникновение тока в замкнутом контуре при изменении магнитного потока через контур. Возникающий при этом ток называют индукционным током.

Объясним причину возникновения индукционного тока

Индукционный ток возникает под действием электрического поля, создающегося за счет изменения магнитного поля. Как всякое электрическое поле, оно совершает работу по перемещению заряда в цепи. Электрическое поле, возникающее в процессе изменения магнитного поля, не связано каким-либо распределением электрических зарядов. Переменное магнитное поле неразрывно связано с этим электрическим полем, и поэтому говорят, что в этом случае мы имеем дело электромагнитным полем. Силовые линии электрического поля, связанного с переменным магнитным полем, не имеют начала и конца — они замкнуты наподобие силовых линий магнитного поля. Такое поле называется вихревым. Вихревое электрическое поле, возникающее в процессе электромагнитной индукции, создает электрический ток в замкнутом проводнике, следовательно, оно способно вызывать циркуляцию электрических зарядов. В связи с этим возникает необходимость введения специальной энергетической характеристики вихревого электрического поля: электродвижущей силы индукции (сокращенно — ЭДС индукции). Обозначается ЭДС индукции буквой ε i .Электродвижущей силой индукции называется отношение работы, совершаемой вихревым полем при перемещении электрического заряда по замкнутому контуру, к модулю перемещаемого заряда:

ЭДС индукции, как и напряжение, выражается в вольтах. По закону Ома для замкнутой цепи I i = ε i / R

где R — сопротивление всей замкнутой цепи. Опыты Фарадея показали, что сила индукционного тока Ii в проводящем контуре прямо пропорциональна скорости изменения числа линий магнитной индукции, пронизывающих поверхность, ограниченную этим контуром.

Опыт 4: внесение (вынесение) магнита в замкнутый контур сначала с одним магнитом, затем с двумя магнитами.

Вывод: величина тока зависит от величины магнитной индукции.

Если в катушку вносить один и тот же постоянный магнит (см. рис. 1), но с разной скоростью, то можно заметить, что при быстром движении магнита сила тока больше, чем при медленном.

Опыт 5: вносим магнит сначала медленно, затем быстро.

Вывод: величина тока зависит от скорости внесения магнита.

Поэтому сила индукционного тока пропорциональна скорости изменения магнитного потока через поверхность, ограниченную контуром: I i

Так как R не зависит от ∆Ф то ЭДС индукции ε i

Таким образом, делаем вывод: ЭДС индукции пропорциональна скорости изменения магнитного поля, пронизывающего катушку.

Опыт 6. Зависимость ЭДС от числа витков в катушке.

Вывод: Сила индукционного тока, а следовательно, и ЭДС индукции пропорциональны числу витков вторичной катушки при одной и той же скорости изменения магнитного поля.

ЭДС индукции совпадает по направлению с индукционным током.

Таким образом, из проделанных опытов мы делаем вывод: ЭДС индукции пропорциональна скорости изменения магнитного поля, пронизывающего катушку, и числу витков на ней. Опыты Фарадея показали, что сила индукционного тока Ii в проводящем контуре прямо пропорциональна скорости изменения числа линий магнитной индукции, пронизывающих поверхность, ограниченную этим контуром.

Направление индукционного тока

Опыт 7: внесение (вынесение) магнита сначала северным полюсом, затем южным полюсом.

Вывод: направление тока зависит от направления магнитного поля.

Опыт 8. демонстрируют зависимость направления тока от замыкания или размыкания цепи первичной катушки.

Исследовав в 1831 году все важнейшие стороны электромагнитной индукции, Фарадей установил несколько правил для определения направления индукционного тока в различных случаях, однако общее правило ему найти не удалось. Оно было установлено позднее, в 1834 году петербургским академиком Эмилем Христиановичем Ленцем и носит поэтому его имя.

Исследуя явление электромагнитной индукции, Э. X. Ленц в 1833 г. установил общее правило для определения направления индукционного тока: индукционный ток всегда имеет такое направление, чтобы своим магнитным полем препятствовать причине, вызвавшей этот ток.

Опыт 9. Демонстрация опыта Ленца. В установке, подносят магнит к сплошному кольцу. Видят: кольцо отталкивается от полюса магнита. Если же надеть кольцо на магнит и затем вытягивать магнит из него, то кольцо тянется за магнитом. Как видно, индуцируемый в кольце ток препятствует в первом случае приближению магнита, во втором — его удалению.

На основе подобных наблюдений русский учёный Э. Х. Ленц предложил следующее правило для определения направления тока, индуцируемого в проводнике: индукционный ток всегда направлен так, что его магнитное поле противодействует тому изменению магнитного поля, которое вызывает этот ток.

Направление индукционного тока определяют по правилу буравчика, по правилу правой руки.

Учитель: Для определения направления индукционного тока в замкнутом контуре используется правило Ленца: Индукционный ток имеет такое направление, что созданный им магнитный поток через поверхность, ограниченную контуром, препятствует изменению магнитного потока, вызвавшего этот ток.

Экспериментальная задача: в стальной сердечник трансформатора, подключенного к напряжению 220В (РНШ) вносят замкнутый контур с лампочкой. Почему загорается лампочка при этом?

6. Закон электромагнитной индукции

Мы установили, что Э.д.с. индукции в какой либо цепи прямо пропорциональна скорости изменения магнитного потока t – время, за которое происходит изменение магнитного потока. Знак минус показывает, что когда магнитный поток уменьшается (∆Ф – отриц.), э.д.с. создает индукционный ток, увеличивающий магнитный поток и наоборот. Закон электромагнитной индукции экспериментальным путём установил М. Фарадей. Немецкий физик и естествоиспытатель Г. Гельмгольц показал, что основной закон электромагнитной индукции ε i = – ∆Ф/∆ t является следствием закона сохранения энергии. ЭДС индукции в замкнутом контуре равна взятой с противоположным знаком скорости изменения магнитного потока, пронизывающего контур.

Выражение ε i = – ∆Ф/∆ t (1), называемое законом Фарадея, является универсальным: оно справедливо для всех случаев электромагнитной индукции. Для катушки с N закон электромагнитной индукции имеет вид:

ε i = – N · ∆Ф/∆ t , Ф= BS [Тл·м 2 Вб], 1 Вб= 1В·1с

Знак минус показывает, что ЭДС индукции Е i , направлена так, что магнитное поле индукционного тока препятствует изменению потока магнитной индукции ∆Ф. Если поток увеличивается (∆Ф > 0), то Е i 0 и направление потока и поля индукционного тока совпадают. Таким образом явление электромагнитной индукции заключается в появлении (наведении) в проводящем контуре, находящемся в магнитном поле, электродвижущей силы в случае изменения величины магнитного потока, проходящего через поверхность, ограниченную этим контуром. Выражение ε i = – N ·∆Ф/∆ t (1) представляет собой одну из математических записей закона электромагнитной индукции — ЭДС, наводимая в контуре электрической цепи, равна взятой с обратным знаком скорости изменения магнитного потока, проходящего через поверхность, ограниченную этим контуром.

7. Электромагнитная индукция в современной технике

Явление электромагнитной индукции лежит в основе работы индукционных генераторов электрического тока, на которые приходится практически вся вырабатываемая в мире электроэнергия.

Примеры использования явления электромагнитной индукции в современной технике:

специальные детекторы для обнаружения металлических предметов;

поезд на магнитной подушке;

электропечи для плавки металлов

бытовые микроволновые СВЧ – печи.

Закрепление изученного: Лабораторная работа « Изучение явления электромагнитной индукции»

infourok.ru

Электромагнитная индукция. Правило Ленца

Явление электрической индукции было открыто выдающимся английским физиком М. Фарадеем в 1831 г. Оно заключается в появлении электронного тока в замкнутом проводящем контуре при изменении во времени магнитного потока, пронизывающего контур. Магнитным потоком Φ через площадь S контура именуют величину

где B – модуль вектора магнитной индукции, α – угол меж вектором и нормалью к плоскости контура (рис. 4.20.1).

Определение магнитного потока несложно обобщить на случай неоднородного магнитного поля и неплоского контура. Единица магнитного потока в системе СИ именуется вебером (Вб). Магнитный поток, равный 1 Вб, создается магнитным полем с индукцией 1 Тл, пронизывающим по направлению нормали тонкий контур площадью 1 м2:

Фарадей экспериментально установил, что при изменении магнитного потока в проводящем контуре появляется ЭДС индукции Eинд, равная скорости конфигурации магнитного потока через поверхность, ограниченную контуром, взятой со знаком минус:

Опыт указывает, что индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда ориентирован так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток. Это утверждение именуется правилом Ленца (1833 г.). Рис. 4.20.2 иллюстрирует правило Ленца на примере недвижного проводящего контура, который находится в однородном магнитном поле, модуль индукции которого возрастает во времени.

homework.net.ua

Электромагнитная индукция. Правило Ленца

Явление электромагнитной индукции заключается в том, что в результате изменения во времени магнитного потока, который пронизывает замкнутый проводящий контур, в контуре возникает электрический ток. Открыто это явление было физиком из Великобритании Максом Фарадеем в 1831 году.

Формула магнитного потока

Введем обозначения, необходимые нам для записи формулы. Для обозначения магнитного потока используем букву Ф , площади контура – S , модуля вектора магнитной индукции – B , α – это угол между вектором B → и нормалью n → к плоскости контура.

Магнитный поток, который проходит через площадь замкнутого проводящего контура, можно задать следующей формулой:

Рисунок 1 . 20 . 1 . Магнитный поток через замкнутый контур. Направление нормали n → и выбранное положительное направление l → обхода контура связаны правилом правого буравчика.

За единицу магнитного потока в С И принят 1 вебер ( В б ) . Магнитный поток, равный 1 В б , может быть создан в плоском контуре площадью 1 м 2 под воздействием магнитного поля с индукцией 1 Т л , которое пронизывает контур по направлению нормали.

1 В б = 1 Т л · м 2

Закон Фарадея

Изменение магнитного потока приводит к тому, что в проводящем контуре возникает ЭДС индукции δ и н д . Она равна скорости, с которой происходит изменение магнитного потока через ограниченную контуром поверхность, взятой со знаком минус. Впервые экспериментально установил это Макс Фарадей. Он же записал свое наблюдение в виде формулы ЭДС индукции, которая теперь носит название Закона Фарадея:

Закон Фарадея:

δ и н д = — ∆ Φ ∆ t

Правило Ленца

Согласно результатам опытов, индукционный ток, который возникает в замкнутом контуре в результате изменения магнитного потока, всегда направлен определенным образом. Создаваемое индукционным током магнитное поле препятствует изменению вызвавшего этот индукционный ток магнитного потока. Ленц сформулировал это правило в 1833 году.

Проиллюстрируем правило Ленца рисунком, на котором изображен неподвижный замкнутый проводящий контур, помещенный в однородное магнитное поле. Модуль индукции увеличивается во времени.

Рисунок 1 . 20 . 2 . Правило Ленца

Здесь ∆ Φ ∆ t > 0 , а δ и н д 0 I и н д протекает навстречу выбранному положительному направлению l → обхода контура.

Благодаря правилу Ленца мы можем обосновать тот факт, что в формуле электромагнитной индукции δ и н д и ∆ Φ ∆ t противоположны по знакам.

Если задуматься о физическом смысле правила Ленца, то это частный случай Закона сохранения энергии.

Причины возникновения индукционного тока в движущихся и неподвижных проводниках

Причин, по которым может происходить изменение магнитного потока, пронизывающего замкнутый контур, две:

  1. Изменение магнитного потока вследствие перемещения всего контура или отдельных его частей в магнитном поле, которое не изменяется со временем;
  2. Изменение магнитного поля при неподвижном контуре.

Перейдем к рассмотрению этих случаев подробнее.

Перемещение контура или его частей в неизменном магнитном поле

При движении проводников и свободных носителей заряда в магнитном поле возникает ЭДС индукции. Объяснить возникновение δ и н д можно действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца здесь – это сторонняя сила.

На рисунке мы изобразили пример индукции, когда прямоугольный контур помещен в однородное магнитное поле B → направленное перпендикулярно плоскости контура. Одна из сторон контура перемещается по двум другим сторонам с некоторой скоростью.

Рисунок 1 . 20 . 3 . Возникновение ЭДС индукции в движущемся проводнике. Отражена составляющая силы Лоренца, которая действует на свободный электрон

На свободные заряды подвижной части контура воздействует сила Лоренца. Основная составляющая силы Лоренца в данном случае направлена вдоль проводника и связана с переносной скоростью зарядов υ → . Модуль этой сторонней силы равен:

Работа силы F Л на пути l равна:

A = F Л · l = e υ B l .

По определению ЭДС:

δ и н д = A e = υ B l .

Значение сторонней силы для неподвижных частей контура равно нулю. Для соотношения δ и н д можно записать другой вариант формулы. Площадь контура с течением времени изменяется на Δ S = l υ Δ t . Соответственно, магнитный поток тоже будет с течением времени изменяться: Δ Φ = B l υ Δ t .

Знаки в формуле, которая связывает δ и н д и ∆ Φ ∆ t , можно установить в зависимости от того, какие направления нормали и направления контура будут выбраны. В случае выбора согласованных между собой по правилу правого буравчика направлений нормали n → и положительного направления обхода контура l → можно прийти к формуле Фарадея.

При условии, что сопротивление всей цепи – это R , то по ней будет протекать индукционный ток, который равен I и н д = δ и н д R . За время Δ t на сопротивлении R выделится джоулево тепло:

∆ Q = R I и н д 2 ∆ t = υ 2 B 2 l 2 R ∆ t

Парадокса здесь нет. Мы просто не учли воздействие на систему еще одной силы. Объяснение заключается в том, что при протекании индукционного тока по проводнику, расположенному в магнитном поле, на свободные заряды действует еще одна составляющая силы Лоренца, которая связана с относительной скоростью движения зарядов вдоль проводника. Благодаря этой составляющей появляется сила Ампера F А → .

Для рассмотренного выше примера модуль силы Ампера равен F A = I B l . Направление силы Ампера таково, что она совершает отрицательную механическую работу A м е х . Вычислить эту механическую работу за определенный период времени можно по формуле:

A м е х = — F υ ∆ t = — I B l υ ∆ t = — υ 2 B 2 l 2 R ∆ t

Проводник, перемещающийся в магнитном поле, испытывает магнитное торможение. Это приводит к тому, что полная работа силы Лоренца равна нулю. Джоулево тепло может выделяться либо за счет уменьшения кинетической энергии движущегося проводника, либо за счет энергии, которая поддерживает скорость перемещения проводника в пространстве.

Изменение магнитного поля при неподвижном контуре

Вихревое электрическое поле – это электрическое поле, которое вызывается изменяющимся магнитным полем.

В отличие от потенциального электрического поля работа вихревого электрического поля при перемещении единичного положительного заряда по замкнутому проводящему контуру равна δ и н д в неподвижном проводнике.

В неподвижном проводнике электроны могут приводиться в движение только под действием электрического поля. А возникновение δ и н д нельзя объяснить действием силы Лоренца.

Первым, кто ввел понятие вихревого электрического поля, был английский физик Джон Максвелл. Случилось это в 1861 году.

Фактически, явления индукции в подвижных и неподвижных проводниках протекают одинаково. Так что в этом случае мы тоже можем использовать формулу Фарадея. Отличия касаются физической причины возникновения индукционного тока: в движущихся проводниках δ и н д обусловлена силой Лоренца, в неподвижных – действием на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Рисунок 1 . 20 . 4 . Модель электромагнитной индукции

Рисунок 1 . 20 . 5 . Модель опытов Фарадея

Рисунок 1 . 20 . 6 . Модель генератора переменного тока

www.zaochnik.com

Еще по теме:

  • Освобождение от уплаты налогов на имущество физических лиц Льготы по налогу на имущество физических лиц Актуально на: 20 февраля 2017 г. Налог на имущество физических лиц является местным налогом (п. 2 ст. 15 НК РФ). Он устанавливается НК РФ и нормативными актами органов муниципальных образований (п. 1 ст. […]
  • Характер общественной опасности статьи в ук Преступление Преступление - это виновно совершенное общественно опасное деяние, запрещенное уголовным законом УК РФ под угрозой наказания ч. 1 ст. 14 УК РФ. Данное определение преступления носит материально-формальный характер. Преступление - […]
  • Почему закон допускает Почему закон допускает расторжение брака без согласия? Орган записи актов гражданского состояния расторгает брак в случае: если супруг признан судом безвестно отсутствующим; признан судом недееспособным; осужден за совершение преступления к […]
  • Скопировала ключ в реестр Скопировала ключ в реестр Довольно часто при оформлении сертификатов ключей электронной подписи можно наблюдать навязчивый пиар токенов с неизвлекаемым ключом. Продавцы из удостоверяющих центров уверяют, что, купив у них СКЗИ КриптоПРО CSP и токен […]
  • Пособие семьям воспитывающим детей рб 2018 С 1 мая увеличены размеры государственных пособий семьям, воспитывающим детей В связи с изменением с 1 мая 2018 г. размеров бюджета прожиточного минимума, утвержденных постановлением Министерства труда и социальной защиты Республики Беларусь от 24 […]
  • Законы трансфигурации Законы трансфигурации Трансфигурация, или наука об изменениях Трансфигурация суть волшебное искусство превращения всего во все. Существует теория трансфигурации (даже не одна), которую вы можете узнать в библиотеках, или у тех, кто ей […]