Как округлить число правило

В приближенных вычислениях часто приходится округлять числа как приближенные, так и точные, т. е. отбрасывать одну или несколько последних цифр. Чтобы обеспечить наибольшую близость округленного числа к округляемому, соблюдаются следующие правила.

Правило 1. Если первая из отбрасываемых цифр больше, чем 5, то последняя из сохраняемых цифр усиливается, т. е. увеличиваемая на единицу. Усиление совершается и тогда, когда первая из отбрасываемых цифр равна 5, а за ней есть одна или несколько значащих цифр. (О случае, когда за отбрасываемой пятеркой нет цифр, см. ниже, правило 3.)

Пример 1. Округляя число 27,874 до трех значащих цифр, пишем 27,9. Третья цифра 8 усилена до 9, так как первая отбрасываемая цифра 7 больше чем 5. Число 27,9 ближе к данному, чем неусиленное округленное число 27,8.

Пример 2. Округляя число 36,251 до первого десятичного знака, пишем 36,3. Цифра десятых 2 усилена до 3, так как первая отбрасываемая цифра равна 5, а за ней есть значащая цифра 1. Число 36,3 ближе к данному (хотя и незначительно), чем неусиленное число 36,2.

Правило 2. Если первая из отбрасываемых цифр меньше чем 5, то усиления не делается.

Пример 3. Округляя число 27,48 до единиц, пишем 27. Это число ближе к данному, чем 28.

Правило 3. Если отбрасывается цифра 5, а за ней нет значащих цифр, то округление производится на ближайшее четное число, т. е. последняя сохраняемая цифра оставляется неизменной, если она четная, и усиливается, если она нечетная. Почему применяется это правило, сказано ниже (см. замечание).

Пример 4. Округляя число 0,0465 до третьего десятичного знака, пишем 0,046. Усиления не делаем, так как последняя сохраняемая цифра 6 — четная. Число 0,046 столь же близко к данному, как 0,047.

Пример 5. Округляя число 0,935 до второго десятичного знака, пишем 0,94. Последняя сохраняемая цифра 3 усиливается, так как она нечетная.

Пример 6. Округляя числа 6,527; 0,456; 2,195; 1,450; 0,950; 4,851; 0,850
до первого десятичного знака, получаем:
6,5; 0,5; 2,2; 1,4; 1,0; 4,9; 0,8.

Замечание. Применяя правило 3 к округлению одного числа, мы не увеличиваем точность округления (см. примеры 4 и 5). Но при многочисленных округлениях избыточные числа будут встречаться примерно столь же часто, как недостаточные. Взаимная компенсация погрешностей обеспечит наибольшую точность результата.

www.maths.yfa1.ru

Как округлить число правило

В практической деятельности человека бывают числа двух видов: точные и приближённые . Часто знание лишь о приближённом числе достаточно для понимания сути дела. Иногда употребляют приближённые числа, так как точное не требуется, а иногда точное число невозможно найти в принципе.

У треугольника 3 стороны. Число 3 – точное.

Сколько учеников в вашей школе? Вряд ли кто-нибудь, кроме директора, ответит точно на этот вопрос. Ученик же посчитает так: 20 классов примерно по 25 человек, получится примерно 500. Если спрашивающего устраивает такая точность, можно считать, что мы получили хорошее приближение.

В приближённых вычислениях часто приходится округлять как точные, так и приближённые числа. Под округлением понимают отбрасывание одной или нескольких последних цифр в десятичном представлении числа. При округлении соблюдают следующие правила.

Если первая из отбрасываемых цифр больше 5, то последняя из сохраняющихся цифр увеличивается на 1. Если первая из отбрасываемых цифр равна 5, а за ней следуют одна или несколько значащих цифр, то последняя из сохраняющихся цифр также увеличивается на 1.

Округлить число 74,28 до десятых.

При округлении числа 74,28 до десятых следует написать 74,3. Действительно, за цифрой 2, обозначающей разряд десятых следует цифра 8, которая больше 5. Следовательно, цифру 2 нужно увеличить на 1. Получается, как и было сказано, 74,3.

Округлить число 74,253 до десятых.

При округлении числа 74,253 до десятых также следует написать 74,3. Действительно, за цифрой 2, обозначающей разряд десятых, следует цифра 5, причём за этой цифрой есть ещё одна значащая цифра. Следовательно, цифру 2 нужно увеличить на 1. Получается, как и было сказано 74,3.

Если первая из отбрасываемых цифр меньше 5, то последняя из сохраняемых цифр остаётся неизменной.

Округлить число 74,24 до десятых.

При округлении числа 74,24 до десятых следует написать 74,2. Действительно, за цифрой 2, обозначающей разряд десятых, следует цифра 4, которая меньше 5. Следовательно, цифру 2 нужно оставить без изменения. Получается, как и было сказано, 74,2.

Если отбрасывается цифра 5, а за ней нет и никогда не было значащих цифр, то последняя из сохраняемых цифр остаётся неизменной, если она чётная, и увеличивается на 1, если она нечётная.

Округлить до десятых число 74,25.

Так как отбрасывается цифра 5, а за ней нет значащих цифр, причём сохраняемая цифра 2 – чётная, то её нужно оставить без изменений. Окончательно: 74,2.

Округлить до десятых число 74,35.

Так как отбрасывается цифра 5, а за ней нет значащих цифр, причём сохраняемая цифра 3 – нечётная, то её нужно увеличить на единицу (до чётного числа). Окончательно: 74,4.

Замечание. Во многих практических задачах пользуются упрощёнными правилами округления, согласно которым цифра, если за ней стоят цифры 0, 1, 2, 3, 4, при округлении не изменяется и увеличивается на 1 в противоположном случае. Это правило немного отлично от строгого правила, приведённого в нашем курсе. Будьте внимательны при решении задач – следует пользоваться строгими правилами округления.

mathematics.ru

Округление чисел

Сегодня мы рассмотрим довольно скучную тему, без понимания которой двигаться дальше не представляется возможным. Эта тема называется «округление чисел» или по-другому «приближённые значения чисел».

Приближённые значения

Приближённые (или приблизительные) значения применяются тогда, когда точное значение чего-либо найти невозможно, или же это значение не важно для исследуемого предмета.

Например, на словах можно сказать, что в городе проживает полмиллиона человек, но это высказывание не будет истинным, поскольку количество человек в городе меняется — люди приезжают и уезжают, рождаются и умирают. Поэтому правильнее будет сказать, что в городе проживает приблизительно полмиллиона человек.

Ещё пример. В девять утра начинаются занятия. Мы вышли из дома в 8:30. Через некоторое время по дороге мы встретили своего товарища, который спросил у нас сколько сейчас времени. Когда мы выходили из дома было 8:30, на дорогу мы потратили какое-то неизвестное время. Мы не знаем сколько сейчас времени, поэтому отвечаем товарищу: «сейчас приблизительно около девяти часов».

В математике приближенные значения указываются с помощью специального знака. Выглядит он следующим образом:

Читается как «приблизительно равно».

Чтобы указать приблизительное значение чего-либо, прибегают к такой операции, как округление чисел.

Округление чисел

Для нахождения приближенного значения применяется такая операция, как округление чисел.

Слово «округление» говорит само за себя. Округлить число значит сделать его круглым. Круглым называется число, которое оканчивается нулем. Например, следующие числа являются круглыми,

10, 20, 30, 100, 300, 700, 1000

Любое число можно сделать круглым. Процедуру, при которой число делают круглым, называют округлением числа.

Мы уже занимались «округлением» чисел, когда делили большие числа. Напомним, что для этого мы оставляли без изменения цифру, образующую старший разряд, а остальные цифры заменяли нулями. Но это были лишь наброски, которые мы делали для облегчения деления. Своего рода лайфхак. По факту, это даже не являлось округлением чисел. Именно поэтому в начале данного абзаца мы взяли слово округление в кавычки.

На самом деле, суть округления заключается в том, чтобы найти ближайшее значение от исходного. При этом, число может быть округлено до определённого разряда — до разряда десятков, разряда сотен, разряда тысяч.

Рассмотрим простой пример на округление. Дано число 17. Требуется округлить его до разряда десятков.

Не забегая вперёд попробуем понять, что означает «округлить до разряда десятков». Когда говорят округлить число 17, от нас требуют найти ближайшее круглое число для числа 17. При этом, в ходе этого поиска возможно изменения коснутся и цифры, которая находится в разряде десятков в числе 17 (т.е единицы).

Представим, что все числа от 10 до 20 лежат на прямой линии:

На рисунке видно, что для числа 17 ближайшее круглое число это 20. Значит ответ к задаче таким и будет: 17 приблизительно равно 20

Мы нашли приближённое значение для 17, то есть округлили его до разряда десятков. Видно, что после округления в разряде десятков появилась новая цифра 2.

Попробуем найти приближённое число для числа 12. Для этого снова представим, что все числа от 10 до 20 лежат на прямой линии:

На рисунке видно, что ближайшее круглое число для 12 это число 10. Значит ответ к задаче таким и будет: 12 приблизительно равно 10

Мы нашли приближённое значение для 12, то есть округлили его до разряда десятков. В этот раз цифра 1, которая стояла в разряде десятков в числе 12, не пострадала от округления. Почему так случилось мы рассмотрим позже.

Попробуем найти ближайшее число для числа 15. Снова представим, что все числа от 10 до 20 лежат на прямой линии:

На рисунке видно, что число 15 одинаково удалено от круглых чисел 10 и 20. Возникает вопрос: которое из этих круглых чисел будет приближённым значением для числа 15? Для таких случаев условились принимать большее число за приближённое. 20 больше чем 10, поэтому приближённое значение для 15 будет число 20

Округлять можно и большие числа. Естественно, для них рисовать прямую линию и изображать числа не представляется возможным. Для них существует свой способ. Например, округлим число 1456 до разряда десятков.

Мы должны округлить 1456 до разряда десятков. Разряд десятков начинается на пятёрке:

Теперь о существовании первых цифр 1 и 4 временно забываем. Остается число 56

Теперь смотрим, какое круглое число находится ближе к числу 56. Очевидно, что ближайшее круглое число для 56 это число 60. Значит заменяем число 56 на число 60

Значит при округлении числа 1456 до разряда десятков получим 1460

Видно, что после округления числа 1456 до разряда десятков, изменения коснулись и самого разряда десятков. В новом полученном числе в разряде десятков теперь располагается цифра 6, а не 5.

Округлять числа можно не только до разряда десятков. Округлять можно также до разряда сотен, тысяч, десятков тысяч.

После того, как становится понятно, что округление это ни что иное, как поиск ближайшего числа, можно применять готовые правила, которые значительно облегчают округление чисел.

Первое правило округления

Из предыдущих примеров стало ясно, что округляя число до определенного разряда, младшие разряды заменяются нулями. Цифры, которые заменяются нулями, называют отбрасываемыми цифрами.

Первое правило округления выглядит следующим образом:

Если при округлении чисел первая из отбрасываемых цифр 0, 1, 2, 3 или 4, то сохраняемая цифра остаётся без изменений.

Например, округлим число 123 до разряда десятков.

В первую очередь находим сохраняемую цифру. Для этого надо прочитать само задание. В разряде, о котором говорится в задании и находится сохраняемая цифра. В задании сказано: округлить число 123 до разряда десятков.

Видим, что в разряде десятков находится двойка. Значит сохраняемой цифрой является цифра 2

Теперь находим первую из отбрасываемых цифр. Первой из отбрасываемых цифр является та цифра, которая следует после сохраняемой цифрой. Видим, что первая цифра после двойки это цифра 3. Значит цифра 3 является первой отбрасываемой цифрой.

Теперь применяем правило округления. Оно говорит, что если при округлении чисел первая из отбрасываемых цифр 0, 1, 2, 3 или 4, то сохраняемая цифра остаётся без изменений.

Так и делаем. Оставляем без изменения сохраняемую цифру, а все младшие разряды заменяем нулями. Другими словами, всё что следует после цифры 2 заменяем нулями (точнее нулём):

Значит при округлении числа 123 до разряда десятков, получаем приближённое ему число 120.

Теперь попробуем округлить то же самое число 123, но уже до разряда сотен.

Нам требуется округлить число 123 до разряда сотен. Снова ищем сохраняемую цифру. В этот раз сохраняемой цифрой является 1, поскольку мы округляем число до разряда сотен.

Теперь находим первую из отбрасываемых цифр. Первой из отбрасываемых цифр является та цифра, которая следует после сохраняемой цифрой. Видим, что первая цифра после единицы это цифра 2. Значит цифра 2 является первой отбрасываемой цифрой:

Теперь применим правило. Оно говорит, что если при округлении чисел первая из отбрасываемых цифр 0, 1, 2, 3 или 4, то сохраняемая цифра остаётся без изменений.

Так и делаем. Оставляем без изменения сохраняемую цифру, а все младшие разряды заменяем нулями. Другими словами, всё что следует после цифры 1 заменяем нулями:

Значит при округлении числа 123 до разряда сотен, получаем приближённое ему число 100.

Пример 3. Округлить число 1234 до разряда десятков.

Здесь сохраняемая цифра это 3. А первая отбрасываемая цифра это 4. Согласно правилу, если при округлении чисел первая из отбрасываемых цифр 0, 1, 2, 3 или 4, то сохраняемая цифра остаётся без изменений.

Значит оставляем сохраняемую цифру 3 без изменений, а всё что располагается после неё заменяем нулём:

Пример 4. Округлить число 1234 до разряда сотен.

Здесь сохраняемая цифра это 2. А первая отбрасываемая цифра это 3. Согласно правилу, если при округлении чисел первая из отбрасываемых цифр 0, 1, 2, 3 или 4, то сохраняемая цифра остаётся без изменений.

Значит оставляем сохраняемую цифру 2 без изменений, а всё что располагается после неё заменяем нулями:

Пример 3. Округлить число 1234 до разряда тысяч.

Здесь сохраняемая цифра это 1. А первая отбрасываемая цифра это 2. Согласно правилу, если при округлении чисел первая из отбрасываемых цифр 0, 1, 2, 3 или 4, то сохраняемая цифра остаётся без изменений.

Значит оставляем сохраняемую цифру 1 без изменений, а всё что располагается после неё заменяем нулями:

Второе правило округления

Второе правило округления выглядит следующим образом:

Если при округлении чисел первая из отбрасываемых цифр 5, 6, 7, 8 или 9, то сохраняемая цифра увеличивается на единицу.

Например, округлим число 675 до разряда десятков.

В первую очередь находим сохраняемую цифру. Для этого надо прочитать само задание. В разряде, о котором говорится в задании и находится сохраняемая цифра. В задании сказано: округлить число 675 до разряда десятков.

Видим, что в разряде десятков находится семёрка. Значит сохраняемой цифрой является цифра 7

Теперь находим первую из отбрасываемых цифр. Первой из отбрасываемых цифр является та цифра, которая следует после сохраняемой цифрой. Видим, что первая цифра после семёрки это цифра 5. Значит цифра 5 является первой отбрасываемой цифрой.

Теперь применяем второе правило округления. Оно говорит, что если при округлении чисел первая из отбрасываемых цифр 5, 6, 7, 8 или 9, то сохраняемая цифра увеличивается на единицу.

У нас первая из отбрасываемых цифр это 5. Значит мы должны увеличить на единицу сохраняемую цифру 7, а всё что следует после неё заменить нулём:

Значит при округлении числа 675 до разряда десятков, получаем приближённое ему число 680.

Теперь попробуем округлить то же самое число 675, но уже до разряда сотен.

Нам требуется округлить число 675 до разряда сотен. Снова ищем сохраняемую цифру. В этот раз сохраняемой цифрой является 6, поскольку мы округляем число до разряда сотен:

Теперь находим первую из отбрасываемых цифр. Первой из отбрасываемых цифр является та цифра, которая следует после сохраняемой цифрой. Видим, что первая цифра после шестёрки это цифра 7. Значит цифра 7 является первой отбрасываемой цифрой:

Теперь применяем второе правило округления. Оно говорит, что если при округлении чисел первая из отбрасываемых цифр 5, 6, 7, 8 или 9, то сохраняемая цифра увеличивается на единицу.

У нас первая из отбрасываемых цифр это 7. Значит мы должны увеличить на единицу сохраняемую цифру 6, а всё что следует после неё заменить нулями:

Значит при округлении числа 675 до разряда сотен, получаем приближённое ему число 700.

Пример 3. Округлить число 9876 до разряда десятков.

Здесь сохраняемая цифра это 7. А первая отбрасываемая цифра это 6. Согласно правилу, если при округлении чисел первая из отбрасываемых цифр 5, 6, 7, 8 или 9, то сохраняемая цифра увеличивается на единицу.

Значит увеличиваем на единицу сохраняемую цифру 7, а всё что располагается после неё заменяем нулём:

Пример 4. Округлить число 9876 до разряда сотен.

Здесь сохраняемая цифра это 8. А первая отбрасываемая цифра это 7. Согласно правилу, если при округлении чисел первая из отбрасываемых цифр 5, 6, 7, 8 или 9, то сохраняемая цифра увеличивается на единицу.

Значит увеличиваем на единицу сохраняемую цифру 8, а всё что располагается после неё заменяем нулями:

Пример 5. Округлить число 9876 до разряда тысяч.

Здесь сохраняемая цифра это 9. А первая отбрасываемая цифра это 8. Согласно правилу, если при округлении чисел первая из отбрасываемых цифр 5, 6, 7, 8 или 9, то сохраняемая цифра увеличивается на единицу.

Значит увеличиваем на единицу сохраняемую цифру 9, а всё что располагается после неё заменяем нулями:

Пример 6. Округлить число 2971 до сотен.

При округлении этого числа до сотен следует быть внимательным, поскольку сохраняемая цифра здесь 9, а первая отбрасываемая цифра это 7. Значит цифра 9 должна увеличиться на единицу. Но дело в том, что после увеличения девятки на единицу получится 10, а это цифра не вместится в разряд сотен нового числа.

В этом случае, в разряде сотен нового числа надо записать 0, а единицу перенести на следующий разряд и сложить с цифрой, которая там находится. Далее заменить все цифры после сохраняемой нулями:

Округление десятичных дробей

При округлении десятичных дробей следует быть особенно внимательным, поскольку десятичная дробь состоит из целой и дробной части. И каждая из этих двух частей имеет свои разряды:

Разряды целой части:

  • разряд единиц
  • разряд десятков
  • разряд сотен
  • разряд тысяч

Разряды дробной части:

  • разряд десятых
  • разряд сотых
  • разряд тысячных

Рассмотрим десятичную дробь 123,456 — сто двадцать три целых четыреста пятьдесят шесть тысячных. Здесь целая часть это 123, а дробная часть 456. При этом у каждой из этих частей есть свои разряды. Очень важно не путать их:

Для целой части применяются те же правила округления, что и для обычных чисел. Отличие в том, что после округления целой части и замены нулями всех цифр после сохраняемой цифры, дробная часть полностью отбрасывается.

Например, округлим дробь 123,456 до разряда десятков. Именно до разряда десятков, а не разряда десятых. Очень важно не перепутать эти разряды. Разряд десятков располагается в целой части, а разряд десятых в дробной.

Мы должны округлить 123,456 до разряда десятков. Сохраняемая цифра здесь это 2, а первая из отбрасываемых цифр это 3

Согласно правилу, если при округлении чисел первая из отбрасываемых цифр 0, 1, 2, 3 или 4, то сохраняемая цифра остаётся без изменений.

Значит сохраняемая цифра останется без изменений, а всё остальное заменится нулём. А что делать с дробной частью? Её просто отбрасывают (убирают):

Теперь попробуем округлить ту же самую дробь 123,456 до разряда единиц. Сохраняемая цифра здесь будет 3, а первая из отбрасываемых цифр это 4, которая находится в дробной части:

Согласно правилу, если при округлении чисел первая из отбрасываемых цифр 0, 1, 2, 3 или 4, то сохраняемая цифра остаётся без изменений.

Значит сохраняемая цифра останется без изменений, а всё остальное заменится нулём. Оставшаяся дробная часть будет отброшена:

Ноль, который остался после запятой тоже можно отбросить. Значит окончательный ответ будет выглядеть следующим образом:

123,456 ≈ 123,0 ≈ 123

Теперь займёмся округлением дробных частей. Для округления дробных частей справедливы те же правила, что и для округления целых частей. Попробуем округлить дробь 123,456 до разряда десятых. В разряде десятых располагается цифра 4, значит она является сохраняемой цифрой, а первая отбрасываемая цифра это 5, которая находится в разряде сотых:

Согласно правилу, если при округлении чисел первая из отбрасываемых цифр 5, 6, 7, 8 или 9, то сохраняемая цифра увеличивается на единицу.

Значит сохраняемая цифра 4 увеличится на единицу, а остальная часть заменится нулями

Попробуем округлить ту же самую дробь 123,456 до разряда сотых. Сохраняемая цифра здесь это 5, а первая из отбрасываемых цифр это 6, которая находится в разряде тысячных:

Согласно правилу, если при округлении чисел первая из отбрасываемых цифр 5, 6, 7, 8 или 9, то сохраняемая цифра увеличивается на единицу.

Значит сохраняемая цифра 5 увеличится на единицу, а остальная часть заменится нулями

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

spacemath.xyz

Округление натуральных чисел.

Округление мы часто используем в повседневной жизни. Если расстояние от дома до школы будет 503 метра. Мы можем сказать, округлив значение, что расстояние от дома до школы 500 метров. То есть мы приблизили число 503 к более легко воспринимающемуся числу 500. Например, булка хлеба весит 498 грамм, то можно сказать округлив результат, что булка хлеба весит 500 грамм.

Округление – это приближение числа к более “легкому” числу для восприятия человека.

В итоге округления получается приближенное число. Округление обозначается символом ≈, такой символ читается “приближённо равно”.

Можно записать 503≈500 или 498≈500.

Читается такая запись, как “пятьсот три приближенно равно пятистам” или “четыреста девяносто восемь приближенно равно пятистам”.

Разберем еще пример:

4 4 71≈4000 4 5 71≈5000

4 3 71≈4000 4 6 71≈5000

4 2 71≈4000 4 7 71≈5000

4 1 71≈4000 4 8 71≈5000

4 0 71≈4000 4 9 71≈5000

В данном примере было произведено округление чисел до разряда тысяч. Если посмотреть закономерность округления, то увидим, что в одном случае числа округляются в меньшую сторону, а в другом – в большую. После округления все остальные числа после разряда тысяч заменили на нули.

Правила округления чисел:

1) Если округляемая цифра равна 0, 1, 2, 3, 4, то цифра разряда до которого идет округление не меняется, а остальные числа заменяются нулями.

2) Если округляемая цифра равна 5, 6, 7, 8, 9, то цифра разряда до которого идет округление становиться на 1 больше, а остальные числа заменяются нулями.

1) Выполните округление до разряда десятков числа 364.

Разряд десятков в данном примере это число 6. После шестерки стоит число 4. По правилу округления цифра 4 разряд десятков не меняет. Записываем вместо 4 нуль. Получаем:

2) Выполните округление до разряда сотен числа 4 781.

Разряд сотен в данном примере это число 7. После семерки стоит цифра 8, которая влияет на то измениться ли разряд сотен или нет. По правилу округления цифра 8 увеличивает разряд сотен на 1, а остальные цифры заменяем нулями. Получаем:

3) Выполните округление до разряда тысяч числа 215 936.

Разряд тысяч в данном примере это число 5. После пятерки стоит цифра 9, которая влияет на то измениться ли разряд тысяч или нет. По правилу округления цифра 9 увеличивает разряд тысяч на 1, а остальные цифры заменяются нулями. Получаем:

21 5 9 36≈21 6 000

4) Выполните округление до разряда десятков тысяч числа 1 302 894.

Разряд тысяч в данном примере это число 0. После нуля стоит цифра 2, которая влияет на то измениться ли разряд десятков тысяч или нет. По правилу округления цифра 2 разряд десятков тысяч не меняет, заменяем на нуль этот разряд и все разряды младшие разряды. Получаем:

13 0 2 894≈13 0 0000

Если точное значение числа неважно, то значение числа округляют и можно выполнять вычислительные операции с приближенными значениями. Результат вычисления называют прикидкой результата действий.

Например: 598⋅23≈600⋅20≈12000 сравним с 598⋅23=13754

Прикидкой результата действий пользуются для того, чтобы быстро посчитать ответ.

Примеры на задания по теме округление:

Пример №1:
Определите до какого разряда сделано округление:
а) 3457987≈3500000 б)4573426≈4573000 в)16784≈17000
Вспомним какие бывают разряды на числе 3457987.

7 – разряд единиц,

8 – разряд десятков,

9 – разряд сотен,

7 – разряд тысяч,

5 – разряд десятков тысяч,

4 – разряд сотен тысяч,
3 – разряд миллионов.
Ответ: а) 3 4 57 987≈3 5 00 000 разряд сотен тысяч б) 4 57 3 426≈4 57 3 000 разряд тысяч в)1 6 7 841≈1 7 0 000 разряд десятков тысяч.

Пример №2:
Округлите число до разрядов 5 999 994: а) десятков б) сотен в) миллионов.
Ответ: а) 5 999 99 4 ≈5 999 990 б) 5 999 9 9 4≈6 000 000 (т.к. разряды сотен, тысяч, десятков тысяч, сотен тысяч цифра 9, каждый разряд увеличился на 1) 5 9 99 994≈6 000 000.

tutomath.ru

c 9 до 18 по рабочим дням: +8 (495) 410-22-37

Чтобы не оперировать с лишними цифрами, затрудняющими вычисления, но не характеризующими требуемую точность, отдельные числовые значения исходных данных следует округлять. Правила округления одинаковы для целых и дробных чисел.

Округление числа представляет собой отбрасывание цифр справа до определенного разряда с возможным изменением цифры этого разряда.

Пример. Округление числа 132,584 до сотых долей единицы (до второго разряда десятичных знаков) даст результат 132,58. Округление этого же числа до десятых долей единицы (до первого разряда десятичных знаков) даст результат 132,6; округление данного числа до целого (до разряда единиц) даст результат 133; округление до разряда десятков даст результат 13-Ю или 1,3-10 2 .

При геодезических вычислениях применяют следующие правила округления:

Если первая из отбрасываемых цифр (считая слева направо) меньше 5, то последняя сохраняемая цифра не меняется.

Округление числа 12,23 до первого десятичного знака даст результат 12,2.

Округление числа 0,02499 до второго десятичного знака даст результат 0,02.

Округление числа 8449 до разряда сотен даст результат 84« 10 2 .

Округление числа 12 456 до разряда тысяч даст результат 12-Ю 3 .

Если первая из отбрасываемых цифр (считая слева направо) больше 5, то последнюю сохраняемую цифру увеличивают на единицу.

Округление числа 24,6 до целых единиц даст результат 25. Округление числа 0,2361 до сотых долей (до второго разряда десятичных знаков) даст результат 0,24.

Округление числа 1483 до целых сотен даст результат 15-10 2 .

Когда отбрасываемая часть числа ровно 5, то последнюю сохраняемую цифру увеличивают на единицу, если она нечетная, и оставляют без изменения, если она четная (т. е. цифра разряда, до которого округляют число, в данном случае всегда должна быть четной).

Округление числа 4,55 до десятых долей даст результат 4,6.

Округление числа 122,5 до целых единиц даст результат 122.

Округление числа 0,0695 до тысячных долей единицы (до третьего разряда десятичных знаков) даст результат 0,070 или 70-10 -3 .

Особо следует выделить положение, когда отбрасываемая цифра 5 образовалась в результате предварительного округления цифр в последующих за ней разрядах. В этом случае необходимо действовать согласно следующим правилам:

если отбрасываемая цифра 5 получилась в результате предыдущего округления в большую сторону, то последняя цифра разряда, до которого округляют число, сохраняется; например, округление до первого десятичного знака числа 0,15, полученного после округления до двух десятичных знаков числа 0,1499, даст^ результат 0,1;

если отбрасываемая цифра 5 получилась в результате предыдущего округления в меньшую сторону, то последнюю цифру разряда, до которого округляют число, увеличивают на единицу; например, округление до одного десятичного знака числа 0,25, полученного в результате предыдущего округления числа 0,2501, даст результат 0,3.

В связи с этим округление приближенных чисел необходимо выполнять сразу до требуемого разряда, а не по этапам. Так, например, округление числа 565,46 до разряда целых единиц непосредственно дает результат 565 (правильный). Округление по этапам могло бы привести к ошибке, а именно: 1-й этап округления числа 565,46 до десятых долей дал бы результат 565,5; 2-й этап округления числа 565,5 до целых единиц дал бы результат 566 (неправильный).

www.mobigeo.ru

Еще по теме:

  • Большинство земель и имущество было собственностью Начни заполнять таблицу «Восток и Запад Древнего мира» (см следующую страницу) — раздел «Особенности цивилизации Древнего Ответ или решение 2 Особенности цивилизаций Древнего Востока Хозяйство: 1. Междуречья великих рек 2. Земледелие 3. . […]
  • Отмена муниципальной пенсии Каков порядок пенсионного обеспечения муниципальных служащих? В области пенсионного обеспечения на муниципальных служащих в полном объеме распространяются права государственных гражданских служащих, установленные федеральными законами и законами […]
  • Нотариус на шокальского 3 корп 1 Нотариусы Москвы, Северо-Восточный автономный округ Нотариальные конторы СВАО, Северо-Восточный автономный округ Иванова В. В. Метро: Алексеевская, 500м 1 2 9 0 8 5 Москва, Звездный бульвар, д.19, оф.106 Орлова Д. В. Метро: Алексеевская, 800м 1 2 9 […]
  • Смеха без правил победители Обсуждения Список участников "Смеха без правил" по выпускам. 11 сообщений Знак "" обозначает победителей, прошедших в следующий этап.1 СЕЗОН. Год выпуска: 2007 1 выпуск СБП:1. Алексей Ёрш2. Денис Косяков 3. Екатерина Фомичёва 4. Апполонов 5. Альф […]
  • Раскройте смысл высказывания общество готовит преступление преступник совершает его Обсуждения Задания для 11 класса. 23 сообщения 11-му классу 11 заданий. Для получения оценки "5" надо:1) сдать вовремя , т.е. только 10 марта,2) задание сделать правильно без единой ошибки,3) задание делать в тетрадке, а не на листочке. Кто сдаст […]
  • Пятигорского мирового суда Квалификационная коллегия судей Ставропольского края объявляет об открытии вакансий на должности: - судьи Минераловодского городского суда Ставропольского края; - мирового судьи судебного участка № 2 Кочубеевского района Ставропольского края; - […]