Оглавление:

Основные законы распределения

Репетитор: Васильев Алексей Александрович

Предметы: математика, физика, информатика, экономика.

Стоимость: 2000 руб / 90 мин.

Репетитор: Крюков Илья Хассанович

Предметы: математика, экономика, бухгалтерский учет.

Стоимость: 1600 руб / 60 мин.

Репетитор: Скрипаленко Михаил Михайлович

Предметы: математика (ЕГЭ), английский язык (GMAT, GRE (general), GRE subject test in maths, IELTS, TOEFL, BEC).

Стоимость: 1200 руб / 60 мин.

Репетитор: Матвеева Милада Андреевна

Предметы: русский язык, литература (ЕГЭ, ГИА).

Стоимость: 1200 руб / 60 мин.

Репетитор: Тверской Василий Борисович

Предметы: математика, физика.

Стоимость: 3500 руб / 90 мин.

Репетитор: Поздняков Андрей Александрович

Предметы: английский язык, (ЕГЭ). Подготовка к TOEFL и IELTS.

Стоимость: 2000 руб / 60 мин.

Репетитор: Ершикова Марина Львовна

Предметы: бухгалтерский учет (кроме банковского), налогообложение, аудит.

Стоимость: 1500 руб / 60 мин.

1.Биномиальный закон распределения.

Биномиальный закон распределения описывает вероятность наступления события А m раз в n независимых испытаниях, при условии, что вероятность р наступления события А в каждом испытании постоянна.

Например, отдел продаж магазина бытовой техники в среднем получает один заказ на покупку телевизоров из 10 звонков. Составить закон распределения вероятностей на покупку m телевизоров. Построить полигон распределения вероятностей.

В таблице m — число заказов, полученных компанией на покупку телевизора. Сn m — число сочетаний m телевизоров по n, p — вероятность наступления события А, т.е. заказа телевизора, q — вероятность не наступления события А, т.е. не заказа телевизора, P m,n — вероятность заказа m телевизоров из n. На рисунке 1 изображен полигон распределения вероятностей.

2.Геометрическое распределение.

Геометрическое распределение случайной величины имеет следующий вид:

P m — вероятность наступления события А в испытание под номером m.
р — вероятность наступления события А в одном испытании.
q = 1 — p

Пример. В компанию по ремонту бытовой техники поступила партия из 10 запасных блоков для стиральных машин. Бывают случаи, что в партии оказывается 1 блок бракованный. Проводится проверка до обнаружения бракованного блока. Необходимо составить закон распределения числа проверенных блоков. Вероятность того, что блок может оказаться бракованным равна 0,1. Построить полигон распределения вероятностей.

Из таблицы видно, что с увеличением числа m, вероятность того, что будет обнаружен бракованный блок, снижается. Последняя строчка (m=10) объединяет две вероятности: 1 — что десятый блок оказался неисправным — 0,038742049 , 2 — что все проверяемые блоки оказались исправными — 0,34867844. Так как вероятность того, что блок окажется неисправным относительно низкая (р=0,1), то вероятность последнего события P m (10 проверенных блоков) относительно высокая. Рис.2.

3.Гипергеометрическое распределение.

Гипергеометрическое распределение случайной величины имеет следующий вид:

Например, составить закон распределения 7-ми угаданных чисел из 49. В данном примере всего чисел N=49, изъяли n=7 чисел, M — всего чисел, которые обладают заданным свойством, т.е. правильно угаданных чисел, m — число правильно угаданных чисел среди изъятых.

Из таблицы видно, что вероятность угадывания одного числа m=1 выше, чем при m=0. Однако затем вероятность начинает быстро снижаться. Таким образом, вероятность угадывания 4-х чисел уже составляет менее 0,005, а 5-ти ничтожно мала.

4.Закон распределения Пуассона.

Случайная величина Х имеет распределение Пуассона, если закон ее распределения имеет вид:

λ = np = const
n — число испытаний, стремящиеся к бесконечности
p — вероятность наступления события, стремящаяся к нулю
m — число появлений события А

Например, в среднем за день в компанию по продаже телевизоров поступает около 100 звонков. Вероятность заказа телевизора марки А равна 0,08; B — 0,06 и C — 0,04. Составить закон распределения заказов на покупку телевизоров марок А,В и С. Построить полигон распределения вероятностей.

Из условия имеем: m=100, λ 1 =8, λ 2 =6, λ 3 =4 ( ≤10 )

(таблица дана не полностью)

Если n достаточно большое и стремится к бесконечности, а значение p стремится к нулю, так что произведение np стремится к постоянному числу, то данный закон является приближением к биномиальному закону распределения. Из графика видно, что чем больше вероятность р, тем ближе кривая расположена к оси m, т.е. более пологая. (Рис.4)

Необходимо отметить, что биномиальный, геометрический, гипергеометрический и закон распределения Пуассона выражают распределение вероятностей дискретной случайной величины.

5.Равномерный закон распределения.

Если плотность вероятности ϕ(х) есть величина постоянная на определенном промежутке [a,b], то закон распределения называется равномерным. На рис.5 изображены графики функции распределения вероятностей и плотность вероятности равномерного закона распределения.

6.Нормальный закон распределения (закон Гаусса).

Среди законов распределения непрерывных случайных величин наиболее распрастраненным является нормальный закон распределения. Случайная величина распределена по нормальному закону распределения, если ее плотность вероятности имеет вид:

где
а — математическое ожидание случайной величины
σ — среднее квадратическое отклонение

График плотности вероятности случайной величины, имеющей нормальный закон распределения, симметричен относительно прямой х=а, т.е х равному математическому ожиданию. Таким образом, если х=а, то кривая имеет максимум равный:

При изменении величины математического ожидания кривая будет смещаться вдоль оси Ох. На графике (Рис.6) видно, что при х=3 кривая имеет максимум, т.к. математическое ожидание равно 3. Если математическое ожидание примет другое значение, например а=6, то кривая будет иметь максимум при х=6. Говоря о среднем квадратическом отклонении, как можно увидеть из графика, чем больше среднее квадратическое отклонение, тем меньше максимальное значение плотности вероятности случайной величины.

Функция, которая выражает распределение случайной величины на интервале (-∞,х), и имеющая нормальный закон распределения, выражается через функцию Лапласа по следующей формуле:

Т.е. вероятность случайной величины Х состоит из двух частей: вероятности где x принимает значения от минус бесконечности до а, равная 0,5 и вторая часть — от а до х. (Рис.7)

www.mathtask.ru

Ответы на экзаменационные вопросы по теории вероятности + Экзаменационные вопросы / 20. Биномиальный закон распределения и его числовые характеристики

20. Биномиальный закон распределения и его числовые характеристики.

Определение. Дискретная случайная величина X имеет биномиальный закон распределения, если она принимает значения 0, 1, 2, . m, . n с вероятностями

Биномиальный закон распределения представляет собой закон распределения числа X=m наступлений события A в n независимых испытаниях, в каждом из которых оно может произойти с одной и той же вероятностью p.

Ряд распределения биномиального закона имеет вид:

Очевидно, что определение биномиального закона корректно, так как основное свойство ряда распределения выполнено, ибоесть не что иное, как сумма всех членов разложения бинома Ньютона:

(отсюда и название закона — биномиальный).

На рисунке приведены многоугольники (полигоны) распределения случайной величины X, имеющей биномиальный закон распределения с параметрами n=5 и p (для p=0,2; 0,3; 0,5; 0,7; 0,8).

Теорема. Математическое ожидание случайной величины X, распределённой по биномиальному закону, M(X)=np, а её дисперсия D(X)=npq.

Случайную величину X — число m наступлений события A в n независимых испытаниях — можно представить в виде суммы n независимых случайных величинX1+X2+. +Xn, каждая из которых имеет один и тот же закон распределения, т. е.

Случайная величина Xk выражает число наступлений события A в k-м испытании (k=1, 2, . n), то есть при наступлении события A Xk=1 с вероятностью p, при ненаступлении — Xk=0с вероятностью q. Случайную величину Xk называют альтернативной случайной величиной (или распределённой по закону Бернулли, или индикатором события A).

Математическое ожидание и дисперсию альтернативной случайной величины найдём по известным формулам.

Теперь математическое ожидание и дисперсия случайной величины X:

(при нахождении математического ожидания и дисперсии суммы случайных величин учтена их независимость).

Следствие. Математическое ожидание частости события в n независимых испытаниях, в каждом из которых оно может наступить с одной и той же вероятностью p, равно p, т. е.

Наивероятнейшее число наступлений события A в n независимых испытаниях, в каждом из которых оно может произойти с одной и той же вероятностью p, удовлетворяет неравенству np-q≤m0≤np+p. Это означает, что мода случайной величины, распределённой по биномиальному закону, — число целое — находится из того же неравенства np-q≤M0(X)≤np+p.

Биномиальный закон широко используется в теории и практике статистического контроля качества продукции, при описании функционирования систем массового обслуживания, в теории стрельбы и в других областях.

studfiles.net

Биномиальное распределение случайной величины

Приветствую всех читателей!

Статистический анализ, как известно, занимается сбором и обработкой реальных данных. Дело полезное, а зачастую и выгодное, т.к. правильные выводы позволяют избежать ошибок и потерь в будущем, а иногда и правильно угадать это самое будущее. Собранные данные отражают состояние некоторого наблюдаемого явления. Данные часто (но не всегда) имеют числовой вид и с ними можно проделывать различные математические манипуляции, извлекая тем самым дополнительную информацию.

Однако не все явления измеряются в количественной шкале типа 1, 2, 3 . 100500 . Не всегда явление может принимать бесконечное или большое количество различных состояний. Например, пол у человека может быть либо М, либо Ж. Стрелок либо попадает в цель, либо не попадает. Голосовать можно либо «За», либо «Против» и т.д. и т.п. Другими словами, такие данные отражают состояние альтернативного признака – либо «да» (событие наступило), либо «нет» (событие не наступило). Наступившее событие (положительный исход) еще называют «успехом». Такие явления также могут носить массовый и случайный характер. Следовательно, их можно измерять и делать статистически обоснованные выводы.

Эксперименты с такими данными называются схемой Бернулли, в честь известного швейцарского математика, который установил, что при большом количестве испытаний соотношение положительных исходов и общего количества испытаний стремится к вероятности наступления этого события.

Переменная альтернативного признака

Для того, чтобы в анализе задействовать математический аппарат, результаты подобных наблюдений следует записать в числовом виде. Для этого положительному исходу присваивают число 1, отрицательному – 0. Другими словами, мы имеем дело с переменной, которая может принимать только два значения: 0 или 1.

Какую пользу отсюда можно извлечь? Вообще-то не меньшую, чем от обычных данных. Так, легко подсчитать количество положительных исходов – достаточно просуммировать все значения, т.е. все 1 (успехи). Можно пойти далее, но для этого потребуется ввести парочку обозначений.

Первым делом нужно отметить, что положительные исходы (которые равны 1) имеют некоторую вероятность появления. Например, выпадение орла при подбрасывании монеты равно ½ или 0,5. Такая вероятность традиционно обозначается латинской буквой p. Следовательно, вероятность наступления альтернативного события равна 1 — p, которую еще обозначают через q, то есть q = 1 – p. Указанные обозначения можно наглядно систематизировать в виде таблички распределения переменной X.

Теперь у нас есть перечень возможных значений и их вероятности. Можно приступить к расчету таких замечательных характеристик случайной величины, как математическое ожидание и дисперсия. Напомню, что математическое ожидание рассчитывается, как сумма произведений всех возможных значений на соответствующие им вероятности:

Вычислим матожидание, используя обозначения в таблицы выше.

Получается, что математическое ожидание альтернативного признака равно вероятности этого события – p.

Теперь определим, что такое дисперсия альтернативного признака. Также напомню, что дисперсия – есть средний квадрат отклонений от математического ожидания. Общая формула (для дискретных данных) имеет вид:

Отсюда дисперсия альтернативного признака:

Нетрудно заметить, что эта дисперсия имеет максимум 0,25 (при p=0,5).

Среднее квадратическое отклонение – корень из дисперсии:

Максимальное значение не превышает 0,5.

Как видно, и математическое ожидание, и дисперсия альтернативного признака имеют очень компактный вид.

Биномиальное распределение случайной величины

Теперь рассмотрим ситуацию под другим углом. Действительно, кому интересно, что среднее выпадение орлов при одном бросании равно 0,5? Это даже невозможно представить. Интересней поставить вопрос о числе выпадения орлов при заданном количестве подбрасываний.

Другими словами, исследователя часто интересует вероятность наступления некоторого числа успешных событий. Это может быть количество бракованных изделий в проверяемой партии (1- бракованная, 0 — годная) или количество выздоровлений (1 – здоров, 0 – больной) и т.д. Количество таких «успехов» будет равно сумме всех значений переменной X, т.е. количеству единичных исходов.

Случайная величина B называется биномиальной и принимает значения от 0 до n (при B = 0 — все детали годные, при B = n – все детали бракованные). Предполагается, что все значения x независимы между собой. Рассмотрим основные характеристики биномиальной переменной, то есть установим ее математическое ожидание, дисперсию и распределение.

Матожидание биномиальной переменной получить очень легко. Вспомним, что математическое ожидание суммы величин есть сумма математических ожиданий каждой складываемой величины, а оно у всех одинаковое, поэтому:

Например, математическое ожидание количества выпавших орлов при 100 подбрасываниях равно 100 × 0,5 = 50.

Теперь выведем формулу дисперсии биномиальной переменной. Дисперсия суммы независимых случайных величин есть сумма дисперсий. Отсюда

Среднее квадратическое отклонение, соответственно

Для 100 подбрасываний монеты среднеквадратическое отклонение равно

И, наконец, рассмотрим распределение биномиальной величины, т.е. вероятности того, что случайная величина B будет принимать различные значения k, где 0≤ k ≤n. Для монеты эта задача может звучать так: какова вероятность выпадения 40 орлов при 100 бросках?

Чтобы понять метод расчета, представим, что монета подбрасывается всего 4 раза. Каждый раз может выпасть любая из сторон. Мы задаемся вопросом: какова вероятность выпадения 2 орлов из 4 бросков. Каждый бросок независим друг от друга. Значит, вероятность выпадения какой-либо комбинации будет равна произведению вероятностей заданного исхода для каждого отдельного броска. Пусть О – это орел, Р – решка. Тогда, к примеру, одна из устраивающих нас комбинаций может выглядеть как ООРР, то есть:

Вероятность такой комбинации равняется произведению двух вероятностей выпадения орла и еще двух вероятностей не выпадения орла (обратное событие, рассчитываемое как 1 — p), т.е. 0,5×0,5×(1-0,5)×(1-0,5)=0,0625. Такова вероятность одной из устраивающих нас комбинации. Но вопрос ведь стоял об общем количестве орлов, а не о каком-то определенном порядке. Тогда нужно сложить вероятности всех комбинаций, в которых присутствует ровно 2 орла. Ясно, все они одинаковы (от перемены мест множителей произведение не меняется). Поэтому нужно вычислить их количество, а затем умножить на вероятность любой такой комбинации. Подсчитаем все варианты сочетаний из 4 бросков по 2 орла: РРОО, РОРО, РООР, ОРРО, ОРОР, ООРР. Всего 6 вариантов.

Следовательно, искомая вероятность выпадения 2 орлов после 4 бросков равна 6×0,0625=0,375.

Однако подсчет подобным образом утомителен. Уже для 10 монет методом перебора получить общее количество вариантов будет очень трудно. Поэтому умные люди давно изобрели формулу, с помощью которой рассчитывают количество различных сочетаний из n элементов по k, где n – общее количество элементов, k – количество элементов, варианты расположения которых и подсчитываются. Формула сочетания из n элементов по k такова:

Подобные вещи проходят в разделе комбинаторики. Всех желающих подтянуть знания отправляю туда. Отсюда, кстати, и название биномиального распределения (формула выше является коэффициентом в разложении бинома Ньютона).

Формулу для определения вероятности легко обобщить на любое количество n и k. В итоге формула биномиального распределения имеет следующий вид.

Словами: количество подходящих под условие комбинаций умножить на вероятность одной из них.

Для практического использования достаточно просто знать формулу биномиального распределения. А можно даже и не знать – ниже показано, как определить вероятность с помощью Excel. Но лучше все-таки знать.

Рассчитаем по этой формуле вероятность выпадения 40 орлов при 100 бросках:

Или всего 1,08%. Для сравнения вероятность наступления математического ожидания этого эксперимента, то есть 50 орлов, равна 7,96%. Максимальная вероятность биномиальной величины принадлежит значению, соответствующему математическому ожиданию.

Расчет вероятностей биномиального распределения в Excel

Если использовать только бумагу и калькулятор, то расчеты по формуле биноминального распределения, несмотря на отсутствие интегралов, даются довольно тяжело. К примеру значение 100! – имеет более 150 знаков. Вручную рассчитать такое невозможно. Раньше, да и сейчас тоже, для вычисления подобных величин использовали приближенные формулы. В настоящий момент целесообразно использовать специальное ПО, типа MS Excel. Таким образом, любой пользователь (даже гуманитарий по образованию) вполне может вычислить вероятность значения биномиально распределенной случайной величины.

Для закрепления материала задействуем Excel пока в качестве обычного калькулятора, т.е. произведем поэтапное вычисление по формуле биномиального распределения. Рассчитаем, например, вероятность выпадения 50 орлов. Ниже приведена картинка с этапами вычислений и конечным результатом.

Как видно, промежуточные результаты имеют такой масштаб, что не помещаются в ячейку, хотя везде и используются простые функции типа: ФАКТР (вычисление факториала), СТЕПЕНЬ (возведение числа в степень), а также операторы умножения и деления. Более того, этот расчет довольно громоздок, во всяком случаен не является компактным, т.к. задействовано много ячеек. Да и разобраться с ходу трудновато.

В общем в Excel предусмотрена готовая функция для вычисления вероятностей биномиального распределения. Функция называется БИНОМ.РАСП.

Синтаксис функции состоит из 4 параметров:

Поля имеют следующие назначения:

Число успехов – количество успешных испытаний. У нас их 50.

Число испытаний – количество подбрасываний: 100 раз.

Вероятность успеха – вероятность выпадения орла при одном подбрасывании 0,5.

Интегральная – указывается либо 1, либо 0. Если 0, то рассчитается вероятность P(B=k); если 1, то рассчитается функция биномиального распределения, т.е. сумма всех вероятностей от B=0 до B=k включительно.

Нажимаем ОК и получаем тот же результат, что и выше, только все рассчиталось одной функцией.

Очень удобно. Эксперимента ради вместо последнего параметра 0 поставим 1. Получим 0,5398. Это значит, что при 100 подкидываниях монеты вероятность выпадения орлов в количестве от 0 до 50 равна почти 54%. А поначалу то казалось, что должно быть 50%. В общем, расчеты производятся легко и быстро.

Настоящий аналитик должен понимать, как ведет себя функция (каково ее распределение), поэтому произведем расчет вероятностей для всех значений от 0 до 100. То есть зададимся вопросом: какова вероятность, что не выпадет ни одного орла, что выпадет 1 орел, 2, 3, 50, 90 или 100. Расчет приведен в нижеследующей самодвигающейся картинке. Синяя линия – само биномиальное распределение, красная точка – вероятность для конкретного числа успехов k.

Кто-то может спросить, а не похоже ли биномиальное распределение на. Да, очень похоже. Еще Муавр (в 1733 г.) говорил, что биномиальное распределение при больших выборках приближается к нормальному закону (не знаю, как это тогда называлось), но его никто не слушал. Только Гаусс, а затем и Лаплас через 60-70 лет вновь открыли и тщательно изучили нормальной закон распределения. На графике выше отлично видно, что максимальная вероятность приходится на математическое ожидание, а по мере отклонения от него, резко снижается. Также, как и у нормального закона.

Биномиальное распределение имеет большое практическое значение, встречается довольно часто. С помощью Excel расчеты проводятся легко и быстро. Так что можно смело использовать.

На этом предлагаю распрощаться до следующей встречи. Всех благ, будьте здоровы!

statanaliz.info

Основные законы распределения

Репетитор: Васильев Алексей Александрович

Предметы: математика, физика, информатика, экономика.

Стоимость: 2000 руб / 90 мин.

Репетитор: Крюков Илья Хассанович

Предметы: математика, экономика, бухгалтерский учет.

Стоимость: 1600 руб / 60 мин.

Репетитор: Скрипаленко Михаил Михайлович

Предметы: математика (ЕГЭ), английский язык (GMAT, GRE (general), GRE subject test in maths, IELTS, TOEFL, BEC).

Стоимость: 1200 руб / 60 мин.

Репетитор: Матвеева Милада Андреевна

Предметы: русский язык, литература (ЕГЭ, ГИА).

Стоимость: 1200 руб / 60 мин.

Репетитор: Тверской Василий Борисович

Предметы: математика, физика.

Стоимость: 3500 руб / 90 мин.

Репетитор: Поздняков Андрей Александрович

Предметы: английский язык, (ЕГЭ). Подготовка к TOEFL и IELTS.

Стоимость: 2000 руб / 60 мин.

Репетитор: Ершикова Марина Львовна

Предметы: бухгалтерский учет (кроме банковского), налогообложение, аудит.

Стоимость: 1500 руб / 60 мин.

1.Биномиальный закон распределения.

Биномиальный закон распределения описывает вероятность наступления события А m раз в n независимых испытаниях, при условии, что вероятность р наступления события А в каждом испытании постоянна.

Например, отдел продаж магазина бытовой техники в среднем получает один заказ на покупку телевизоров из 10 звонков. Составить закон распределения вероятностей на покупку m телевизоров. Построить полигон распределения вероятностей.

В таблице m — число заказов, полученных компанией на покупку телевизора. Сn m — число сочетаний m телевизоров по n, p — вероятность наступления события А, т.е. заказа телевизора, q — вероятность не наступления события А, т.е. не заказа телевизора, P m,n — вероятность заказа m телевизоров из n. На рисунке 1 изображен полигон распределения вероятностей.

2.Геометрическое распределение.

Геометрическое распределение случайной величины имеет следующий вид:

P m — вероятность наступления события А в испытание под номером m.
р — вероятность наступления события А в одном испытании.
q = 1 — p

Пример. В компанию по ремонту бытовой техники поступила партия из 10 запасных блоков для стиральных машин. Бывают случаи, что в партии оказывается 1 блок бракованный. Проводится проверка до обнаружения бракованного блока. Необходимо составить закон распределения числа проверенных блоков. Вероятность того, что блок может оказаться бракованным равна 0,1. Построить полигон распределения вероятностей.

Из таблицы видно, что с увеличением числа m, вероятность того, что будет обнаружен бракованный блок, снижается. Последняя строчка (m=10) объединяет две вероятности: 1 — что десятый блок оказался неисправным — 0,038742049 , 2 — что все проверяемые блоки оказались исправными — 0,34867844. Так как вероятность того, что блок окажется неисправным относительно низкая (р=0,1), то вероятность последнего события P m (10 проверенных блоков) относительно высокая. Рис.2.

3.Гипергеометрическое распределение.

Гипергеометрическое распределение случайной величины имеет следующий вид:

Например, составить закон распределения 7-ми угаданных чисел из 49. В данном примере всего чисел N=49, изъяли n=7 чисел, M — всего чисел, которые обладают заданным свойством, т.е. правильно угаданных чисел, m — число правильно угаданных чисел среди изъятых.

Из таблицы видно, что вероятность угадывания одного числа m=1 выше, чем при m=0. Однако затем вероятность начинает быстро снижаться. Таким образом, вероятность угадывания 4-х чисел уже составляет менее 0,005, а 5-ти ничтожно мала.

4.Закон распределения Пуассона.

Случайная величина Х имеет распределение Пуассона, если закон ее распределения имеет вид:

λ = np = const
n — число испытаний, стремящиеся к бесконечности
p — вероятность наступления события, стремящаяся к нулю
m — число появлений события А

Например, в среднем за день в компанию по продаже телевизоров поступает около 100 звонков. Вероятность заказа телевизора марки А равна 0,08; B — 0,06 и C — 0,04. Составить закон распределения заказов на покупку телевизоров марок А,В и С. Построить полигон распределения вероятностей.

Из условия имеем: m=100, λ 1 =8, λ 2 =6, λ 3 =4 ( ≤10 )

(таблица дана не полностью)

Если n достаточно большое и стремится к бесконечности, а значение p стремится к нулю, так что произведение np стремится к постоянному числу, то данный закон является приближением к биномиальному закону распределения. Из графика видно, что чем больше вероятность р, тем ближе кривая расположена к оси m, т.е. более пологая. (Рис.4)

Необходимо отметить, что биномиальный, геометрический, гипергеометрический и закон распределения Пуассона выражают распределение вероятностей дискретной случайной величины.

5.Равномерный закон распределения.

Если плотность вероятности ϕ(х) есть величина постоянная на определенном промежутке [a,b], то закон распределения называется равномерным. На рис.5 изображены графики функции распределения вероятностей и плотность вероятности равномерного закона распределения.

6.Нормальный закон распределения (закон Гаусса).

Среди законов распределения непрерывных случайных величин наиболее распрастраненным является нормальный закон распределения. Случайная величина распределена по нормальному закону распределения, если ее плотность вероятности имеет вид:

где
а — математическое ожидание случайной величины
σ — среднее квадратическое отклонение

График плотности вероятности случайной величины, имеющей нормальный закон распределения, симметричен относительно прямой х=а, т.е х равному математическому ожиданию. Таким образом, если х=а, то кривая имеет максимум равный:

При изменении величины математического ожидания кривая будет смещаться вдоль оси Ох. На графике (Рис.6) видно, что при х=3 кривая имеет максимум, т.к. математическое ожидание равно 3. Если математическое ожидание примет другое значение, например а=6, то кривая будет иметь максимум при х=6. Говоря о среднем квадратическом отклонении, как можно увидеть из графика, чем больше среднее квадратическое отклонение, тем меньше максимальное значение плотности вероятности случайной величины.

Функция, которая выражает распределение случайной величины на интервале (-∞,х), и имеющая нормальный закон распределения, выражается через функцию Лапласа по следующей формуле:

Т.е. вероятность случайной величины Х состоит из двух частей: вероятности где x принимает значения от минус бесконечности до а, равная 0,5 и вторая часть — от а до х. (Рис.7)

www.mathtask.ru

Еще по теме:

  • Городские суды нижнего новгорода Городские суды нижнего новгорода Нижегородский районный суд г. Нижний Новгород РЕЖИМ РАБОТЫ НИЖЕГОРОДСКОГО Перерыв на обед: с 12.00 до 12.45 Прием граждан по ГПК РФ и КАС осуществляется дежурным помощником судьи в течение всего […]
  • Адреса нотариусов люберцы Адреса нотариусов люберцы Восточный административный округ Москвы Мы предлагаем адреса нотариусов ближайщих районов Нотариусы в Люберцах: Нотариус Водопьянова Татьяна Николаевна Люберцы г., Октябрьский просп., 55, корп.2 +7 (495) […]
  • Размер пенсии в 2001 Как самому рассчитать пенсию? Здравствуйте, дорогая редакция! У меня вопрос по размеру пенсии. В начале сентября этого года я отпраздновал 60-летие. Пенсию мне назначили 9264,60 руб. При трудовом стаже 40 лет, я ожидал большего. Поэтому и сейчас […]
  • Оформить документы на опекунство Оформление опекунство над пожилым человеком в 80-летнем возрасте: документация Часто люди в преклонном возрасте не способны заботиться сами о себе. Оформленная опека над человеком, которому более 80 лет, позволяет ухаживать за ним, не нарушая […]
  • Уфмс воронеж гражданство Отдел УФМС России по Воронежской области в Коминтерновском районе г. Воронежа Руководство Управления Начальник Викулина Ирина Викторовна Старший инспектор Филимонцева Лариса Петровна График работы по приему населения Прием: Понедельник: 18.00 - […]
  • Судьи ленинского районного суда саранска Судьи ленинского районного суда саранска График работы суда Пн-Чт 08.30 - 17.30 Пт 08.30 - 16.15 График работы приемной суда График приема граждан отделами обеспечения судопроизводства Пн 09.00 - 15.30 Чт 15.00 - 16.00 Вт 09.00 - 11.00 Пт 13.30 - […]